Skip to main content
Log in

Differential characterization of two leucine aminopeptidases in Drosophila melanogaster

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Two leucine aminopeptidases from Drosophila melanogaster larvae have been partially purified. The LAP A and D enzymes have similar biochemical characteristics including molecular weights of ≅280,000 daltons, Michaelis-Menten constants of ≅0.05 mM, associations with metal cofactors, and specificities toward natural and chromogenic substrates. They differ in their pH optima and spatial distributions. If the closely linked genes that code for these enzymes have resulted from a tandem gene duplication event, it is suggested that there has been subsequent evolutionary divergence. This would provide Drosophila larvae with two related, but functionally distinct enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashburner, M., and Bonner, J. J. (1979). The induction of gene activity in Drosophila by heat shock. Cell 17241–254.

    Google Scholar 

  • Basha, S. M. M., Horst, M. N., Bazer, F. W., and Roberts, R. M. (1978). Peptidases from pig reproductive tract: Purification and properties of aminopeptidases from uterine secretions, allantoic fluid and amniotic fluid. Arch. Biochem. Biophys. 185174–184.

    Google Scholar 

  • Beckman, L, and Johnson, F. M. (1964). Genetic control of aminopeptidases in Drosophila melanogaster. Hereditas 51221–230.

    Google Scholar 

  • Begg, M., and Cruickshank, W. J. (1964). A partial analysis of Drosophila larval haemolymph. Proc. Roy. Soc. (Edin.) B 68215–236.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72248–254.

    Google Scholar 

  • Doane, W. W. (1969). Drosophila amylases and problems in cellular differentiation. In Hanly, E. W. (ed.), Problems in Biology: RNA in Development University of Utah Press, Salt Lake City, pp. 73–109.

    Google Scholar 

  • Falke, E. V., and MacIntyre, R. J. (1966). The genetic localization of a non-specific leucine aminopeptidase in Drosophila melanogaster. Dros. Inform. Serv. 41165–166.

    Google Scholar 

  • Ferguson, K. A., and Wallace, A. L. C. (1961). Starch-gel electrophoresis of anterior pituitary hormones. Nature 190629–630.

    Google Scholar 

  • Gooding, R. H., and Rolseth, B. M. (1976). Digestive processes of haematophagous insects. XI. Partial purification and some properties of six proteolytic enzymes from the tsetse fly Glossina morsitans morsitans. Can. J. Zool. 541950–1959.

    Google Scholar 

  • Gordon, A. H., and Lewis, L. N. (1967). Preparative acrylamide electrophoresis: A single gel system. Anal. Biochem. 21190–200.

    Google Scholar 

  • Hanson, H., and Frohne, M. (1976). Crystalline leucine aminopeptidase from lens. In Lorard, L. (ed.) Methods of Enzymology Academic Press, New York, Vol. 45, pp. 504–521.

    Google Scholar 

  • Himmelhoch, S. R. (1969). Leucine aminopeptidase: A zinc metalloenzyme. Arch. Biochem. Biophys. 134597–602.

    Google Scholar 

  • Hubby, J. L., and Lewontin, R. C. (1966). A molecular approach to the study of genetic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54577–594.

    Google Scholar 

  • Idahl, L. -Å., and Täljedal, I. -B. (1968). Leucyl-napthylamide-splitting enzymes in the mammalian endocrine pancreas. Biochem. J. 106161–165.

    Google Scholar 

  • Lakovaara, S., and Saura, A. (1972). Location of enzyme loci in chromosomes of Drosophila willistoni. Experientia 28355–356.

    Google Scholar 

  • Law, J. H., Dunn, P. E., and Kramer, K. J. (1977). Insect proteases and peptidases. In Meister, A. (ed.), Advances in Enzymology John Wiley and Sons, New York, Vol. 45, pp. 389–425.

    Google Scholar 

  • Lefevre, G., Jr., and Green, M. M. (1972). Genetic duplication in the white-split interval of the X-chromosome in Drosophila melanogaster. Chromosoma 36391–412.

    Google Scholar 

  • Lewis, E. B. (1960). A new standard food medium. Dros. Inform. Serv. 34117–118.

    Google Scholar 

  • Linderstrøm-Lang, K. (1929). Über Darmerepsin. Z. Physiol. Chem. 182151–174.

    Google Scholar 

  • Lindsley, D. L., and Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster, Carnegie Inst. Wash. Publ. 627.

  • Marks, N., Datta, R. K., and Lajtha, A. (1968). Partial resolution of brain arylamidases and aminopeptidases. J. Biol. Chem. 2432882–2889.

    Google Scholar 

  • Maroux, S., Lorward, D., and Baratti, J. (1973). The aminopeptidase from hog intestinal brush border. Biochim. Biophys. Acta 321282–295.

    Google Scholar 

  • Morris, C. J. O. R. (1964). Thin-layer chromatography of proteins on Sephadex G-100 and G-200. J. Chromatogr. 16167–175.

    Google Scholar 

  • Ohno, S. (1970). Evolution by Gene Duplication Springer-Verlag, New York.

    Google Scholar 

  • Pfleiderer, G. (1970). Particle-bound aminopeptidase from pig kidney. In PerImann, G. E., and Lorand, L. (eds.), Methods of Enzymology Academic Press, New York, Vol. 19, pp. 514–521.

    Google Scholar 

  • Radola, B. J. (1968). Thin-layer gel filtration of proteins. I. Method. J. Chromatogr. 3861–77.

    Google Scholar 

  • Reichers, L. A., Meyers, F. W., and Berry, S. J. (1969). DNase as a component of “multi-enzyme complexes” in the blood of saturniid moths. J. Insect Physiol. 15743–753.

    Google Scholar 

  • Ritossa, F. M., and Spiegelman, S. (1965). Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of D. melanogaster. Proc. Natl. Acad. Sci. USA 53737–745.

    Google Scholar 

  • Sakai, R. K., Tung, D. A., and Scandalios, J. G. (1969). Developmental genetic studies of aminopeptidases in Drosophila melanogaster. Mol. Gen. Genet. 10524–29.

    Google Scholar 

  • Schabort, J. C., and DuToit, P. J. (1978). An aminopeptidase from Agave americana variegata. II. Aspects of enzyme kinetics, specificity, inhibition and mechanism of action. Int. J. Biochem. 9171–177.

    Google Scholar 

  • Smith, E. L., and Bergmann, M. (1944). The aminopeptidase from hog intestinal brush border. J. Biol. Chem. 153627–651.

    Google Scholar 

  • Smithies, O. (1959). An improved procedure for starch-gel electrophoresis: Further variations in the serum proteins of normal individuals. Biochem. J. 71585–587.

    Google Scholar 

  • Sturtevant, A. H. (1925). The effects of unequal crossing over at the Bar locus in Drosophila. Genetics 10117–147.

    Google Scholar 

  • Vesterberg, O. (1971). Staining of protein zones after isoelectric focusing in polyacrylamide gels. Biochim. Biophys. Acta 243345–348.

    Google Scholar 

  • Walker, V. K., and Williamson, J. H. (1980). Ontogeny and tissue distribution of leucine aminopeptidase in Drosophila melangaster. Insect Biochem. 10535–541.

    Google Scholar 

  • Walker, V. K., Geer, B. W., and Williamson, J. H. (1980). Dietary modulation and histochemical localization of leucine aminopeptidase activity in Drosophila melangaster larvae. Insect Biochem. 10543–548.

    Google Scholar 

  • Ward, C. W. (1975a). Resolution of proteases in the keratinolytic larvae of the webbing clothes moth. Aust. J. Biol. Sci. 281–23.

    Google Scholar 

  • Ward, C. W. (1975b). Aminopeptidases in webbing clothes moth larvae. Properties and specificity of the major enzyme of high electrophoretic mobility. Aust. J. Biol. Sci. 28447–455.

    Google Scholar 

  • Ward, C. W. (1975c). Aminopeptidases in webbing clothes moth larvae. Properties and specificities of the enzymes of intermediate electrophoretic mobility. Biochim. Biophys. Acta 410361–369.

    Google Scholar 

  • Ward, C. W. (1975d). Aminopeptidases in webbing clothes moth larvae. Properties and specificity of the major enzyme of low electrophoretic mobility. Int. J. Biochem. 6765–768.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Virginia K. Walker was supported by an NRC Predoctoral Scholarship and a Killam Merit Scholarship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, V.K., Williamson, J.H. & Church, R.B. Differential characterization of two leucine aminopeptidases in Drosophila melanogaster . Biochem Genet 19, 47–60 (1981). https://doi.org/10.1007/BF00486136

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00486136

Key words

Navigation