Skip to main content
Log in

Electrophoretic types of transaldolase, transketolase, and other enzymes in bifidobacteria

  • Biochemistry
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The technique of starch-gel electrophoresis with staining for transaldolase, transketolase, 6-phosphogluconate dehydrogenase, and aldolase, was used to compare 49 representative strains of the genus Bifidobacterium, the deoxyribonucleic acid homology relationships of which were known. The zymograms obtained with fructose-6-phosphate as substrate for staining were also recorded and compared. Parallel experiments were made with spectrophotometric techniques to evaluate the specificity of the staining for transaldolase and transketolase. In each of the enzymatic activities investigated, isozymes were revealed by this technique. Their distribution is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brenner, D. J., Fanning, G. R., Skerman, F. J. and Falkow, S. 1972. Polynucleotide sequence divergence among strains of Escherichia coli and closely related organisms. —J. Bacteriol. 109: 953–965.

    PubMed  Google Scholar 

  • Kiely, M. E., Tan, E. L. and Wood, T. 1969. The purification of transketolase from Candida utilis. — Can. J. Biochem. 47: 455–460.

    PubMed  Google Scholar 

  • Kochetov, G. A., Nikitushkina, L. I. and Chernov, N. N. 1970. A complex of functionally-bound enzymes: transketolase and glyceraldehydephosphate dehydrogenase. — Biochem. Biophys. Res. Commun. 40: 873–879.

    PubMed  Google Scholar 

  • Lipmann, F. and Tuttle, L. C. 1945. A specific micromethod for determination of acyl-phosphates. — J. Biol. Chem. 159: 21–28.

    Google Scholar 

  • Matteuzzi, D., Crociani, F., Zani, G. and Trovatelli, L. D. 1971. Bifidobacterium suis n. sp.: a new species of the genus Bifidobacterium isolated from pig feces. — Z. Allg. Mikrobiol. 11: 387–395.

    PubMed  Google Scholar 

  • Mitsuoka, T. 1969. Vergleichende Untersuchungen über die Bifidobakterien aus dem Verdauungstrakt von Menschen und Tieren. — Zbl. Bakt. I. Abt. Orig. 210: 52–64.

    Google Scholar 

  • Reuter, G. 1971. Designation of type strains for Bifidobacterium species. — Int. J. Syst. Bacteriol. 21: 273–275.

    Google Scholar 

  • Scardovi, V. and Crociani, F. 1974. Bifidobacterium catenulatum, Bifidobacterium dentium, and Bifidobacterium angulatum: three new species and their deoxyribonucleic acid homology relationships. — Int. J. Syst. Bacteriol. 24: 6–20.

    Google Scholar 

  • Scardovi, V., Sgorbati, B. and Zani, G. 1971a. Starch gel electrophoresis of fructose-6-phosphate phosphoketolase in the genus Bifidobacterium. — J. Bacteriol. 106: 1036–1039.

    PubMed  Google Scholar 

  • Scardovi, V. and Trovatelli, L. D. 1965. The fructose-6-phosphate shunt as peculiar pattern of hexose degradation in the genus Bifidobacterium. — Ann. Microbiol. 15: 19–29.

    Google Scholar 

  • Scardovi, V. and Trovatelli, L. I. 1974. Bifidobacterium animalis (Mitsuoka) comb. nov. and the “minimum” and “subtile” groups of new bifidobacteria found in sewage. — Int. J. Syst. Bacteriol. 24: 21–28.

    Google Scholar 

  • Scardovi, V., Trovatelli, L. D., Crociani, F. and Sgorbati, B. 1969. Bifid bacteria in bovine rumen. New species of the genus Bifidobacterium: B. globosum n. sp. and B. ruminale n. sp. — Arch. Mikrobiol. 68: 278–294.

    PubMed  Google Scholar 

  • Scardovi, V., Trovatelli, L. D., Zani, G., Crociani, F. and Matteuzzi, D. 1971b. Deoxyribonucleic acid homology relationships among species of the genus Bifidobacterium. —Int. J. Syst. Bacteriol. 21: 276–294.

    Google Scholar 

  • Scardovi, V. and Zani, G. 1974. Bifidobacterium magnum sp. nov., a large, acidophilic bifidobacterium isolated from rabbit feces. — Int. J. Syst. Bacteriol. 24: 29–34.

    Google Scholar 

  • Schleifer, K. H. and Kandler, O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. — Bacteriol. Rev. 36: 407–477.

    PubMed  Google Scholar 

  • Sgorbati, B., Zani, G., Trovatelli, L. D. and Scardovi, V. 1970. Gluconate dissimilation by the bifid bacteria of the honey bee. — Ann. Microbiol. 20: 57–64.

    Google Scholar 

  • Tsolas, O. and Horecker, B. L. 1970. Isoenzymes of transaldolase in Candida utilis. I. Isolation of three isoenzymes from yeast extracts. — Arch. Biochem. Biophys. 136: 287–302.

    PubMed  Google Scholar 

  • Veerkamp, J. H. 1969. Catabolism of glucose and derivatives of 2-deoxy-2-amino-glucose in Bifidobacterium bifidum var. pennsylvanicus. — Arch. Biochem. Biophys. 129: 257–263.

    PubMed  Google Scholar 

  • de Vries, W., Gerbrandy, S. J. and Stouthamer, A. H. 1967. Carbohydrate metabolism in Bifidobacterium bifidum. — Biochim. Biophys. Acta 136: 415–425.

    PubMed  Google Scholar 

  • Wood, W. A. 1971. Assay of enzymes representative of metabolic pathways. p. 411–424. In J. R. Norris and D. W. Ribbons, (eds.), Methods in Microbiology, Vol. 6A. — Academic Press. New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scardovi, V., Sgorbati, B. Electrophoretic types of transaldolase, transketolase, and other enzymes in bifidobacteria. Antonie van Leeuwenhoek 40, 427–440 (1974). https://doi.org/10.1007/BF00399355

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399355

Keywords

Navigation