Skip to main content
Log in

Ultrastructural aspects of atrium development: demonstration of endocardial discontinuities and immunolabeling of atrial natriuretic factor in the Syrian hamster

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The endocardium ultrastructure of 13 embryonic day old hamsters was examined, especially in relationship with the atrial myocytes. The endothelial morphology was described, including the junctional attachments and their relationships with subjacent atrial myocytes. Characteristic atrial myocytes organelles were identified: myofibrils, atrial granules, lipidic inclusions, and polysomes. Immunogold labeling demonstrated that atrial natriuretic factor (ANF)-containing granules were already present in the differentiating cardiomyocytes, even before the myofibrils were completely organized. At this stage of development, while the endothelium was a narrow barrier between the blood and the cardiomyocytes, it displayed fenestrations, but also epithelial discontinuities. In addition it also contains immunoreactive-ANF products. In light of the current knowledge about ANF processing it was proposed that the endocardium lining could be an obligated passageway for transport or activating proANF into ANF before its release into the blood stream. In addition the endocardial gaps could suggest that, until about 13 to 14 days of fetal development, heart atrial tissue could be more susceptible to the effects of pathogenetic compounds than in a later state of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham NG, Pinto A, Mullane KM, Levere RD, Spokas E (1985) Presence of cytochrome P-450-dependent monooxygenase in intimal cells of the hog aorta. Hypertension 7:899–904

    Google Scholar 

  • Abraham NG, Pinto A, Levere RD, Mullane KM (1987) Identification of heme oxygenase and cytochrome P-450 in the rabbit heart. J Mol Cell Cardiol 19:73–81

    Google Scholar 

  • Anversa P, Giacomelli F, Wiener J (1975) Intercellular junctions of rat endocardium. Anat Rec 183:477–484

    Google Scholar 

  • Ardaillou N, Nivez MP, Ardaillou R (1985) Stimulation of guanylate cyclase by atrial natriuretic factor in isolated human glomeruli. FEBS Lett 189:8–12

    Google Scholar 

  • Atlas SA, Kleinert HD, Camargo MJ, Januszewicz A, Sealey JE, Laragh JH, Schilling JW, Lewicki JA, Johnson LK, Maack T (1984) Purification, sequencing and synthesis of natriuretic and vasoactive rat atrial peptides Nature 309:717–719

    Google Scholar 

  • Bencosme SA, Berger JM (1972) Specific granules in human and non-human cardiocytes. In: Bajusz E, Rona G (eds) Recent Advances in Studies on Cardiac Structure and Metabolism. University Park Press, vol 1, pp 327–339

  • Berger JM, Bencosme SA (1971) Fine structural cytochemistry of granules in atrial cardiocytes. J Mol Cell Cardiol 3:111–120

    Google Scholar 

  • Bianchi C, Gutkowska J, Thibault G, Garcia R, Genest J, Cantin M (1985) Radioautographic localization of 125I-atrial natriuretic factor (ANF) in rat tissues. Histochemistry 82:441–452

    Google Scholar 

  • Bloch KD, Scott JA, Zisfein JB, Fallon JT, Margolies MN, Seidman CE, Matsueda GR, Homcy CJ, Graham RM, Seidman JG (1985) Biosynthesis and secretion of proatrial natriuretic factor by cultured rat cardiocytes. Science 230:11168–1171

    Google Scholar 

  • Bolender DL, Markwald RR (1979) Epithelial-mesenchymal transformation in chick atrioventricular cushion morphogenesis. Scanning Electron Microsc 3:313–321

    Google Scholar 

  • Boyer CC (1968) Embryology. In: Hoffman RA, Robinson PF, Magalhaes H (eds) The golden hamster. Its biology and use in medical research. Iowa University Press, Chapt 5, pp 73–87

  • Briggs JP, Steipe B, Schubert G, Schnermann J (1982) Micropuncture studies of the renal effects of atrial natriuretic substance. Pflügers Arch 395:271–276

    Google Scholar 

  • Buss H, Dahm HH, Lindenfelser R (1973) Die Oberfläche des Endocards des Rattenherzens. Rasterelektronenmikroskopische Untersuchungen. Beitr Pathol 148:34–359

    Google Scholar 

  • Candiollo L (1963) The fine structure of the endocardial endothelium. Z Zellforsch 61:486–492

    Google Scholar 

  • Cantin M, Genest J (1985) The heart and the atrial natriuretic factor. Endocrinol Rev 6:107–127

    Google Scholar 

  • Currie MG, Geller DM, Cole BR, Siegel NR, Fok KF, Adams SP, Eubanks SR, Galluppi CR, Needleman P (1984) Purification and sequence analysis of bioactive atrial peptides (atriopeptins) Science 223:67–69

    Google Scholar 

  • De Bold AJ (1985) Atrial natriuretic factor: an hormone produced by the heart. Science 230:767–770

    Google Scholar 

  • De Bold AJ (1987) Historical perspectives of atrial specific granules. In: Mulrow PJ, Schrier R (eds) Atrial hormones and other natriuretic factors. Am Physiol Soc Clin Physiol Series Bethesda MD, pp 1–5

  • De Bold AJ, Bencosme SA (1975) Selective light microscopic demonstration of the specific granulation of the rat atrial myocardium by lead-hematoxylin-tartrazine. Stain Technol 50:89–94

    Google Scholar 

  • De Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extracts in rats. Life Sci 28:89–94

    Google Scholar 

  • De Mey J, Moeremans M, De Waele M, Geuens G, De Brabander M (1981) The IGS (Immuno-Gold Staining) method used with monoclonal antibodies. In: Peeters M (ed) Procedings of Colloquium on the Protides of the Biological Fluids. Pergamon Press Oxford, pp 173–176

    Google Scholar 

  • Fitzharris TP (1981) Endocardial shape change in the truncus during cushion tissue formation. In: Pexieder T (ed) Mechanisms of cardiac morphogenesis and teratogenesis. Raven Press, New York, pp 227–235

    Google Scholar 

  • Flynn TG, Davies PL (1983a) The biochemistry and molecular biology of atrial natriuretic factor. Biochem J 232:313–321

    Google Scholar 

  • Flynn TG, de Bold ML, de Bold AJ (1983b) The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem. Biophys Res Commun 117:859–865

    Google Scholar 

  • Forssmann WG (1986) Cardiac hormones. I. Review on the morphology, biochemistry and molecular biology of the endocrine heart. Eur J Clin Invest 16:439–451

    Google Scholar 

  • Forssmann WG, Hock D, Lottspeich F, Henschen A, Kreye V, Christmann M, Reinecke M, Metz J, Carlquist M, Mutt V (1983) The right auricle of the heart is an endocrine organ. Anat Embryol 168:307–313

    Google Scholar 

  • Forssmann WG, Birr C, Carlquist M, Christmann M, Finke R, Henschen A, Hock D, Kirchheim H, Kreye V, Lottspeich F, Metz J, Mutt V, Reinecke M (1984) The auricular myocardiocytes of the heart constitute an endocrine organ. Characterization of a porcine cardiac peptide hormone, cardiodilatin-126. Cell Tissue Res 238:425–430

    Google Scholar 

  • Garcia R, Cantin M, Thibault M, Genest J (1982) Relationship of specific granules to the natriuretic and diuretic activity of rat atria. Experientia 38:1071–1073

    Google Scholar 

  • Geller DM, Currie MG, Siegel NR, Fok KF, Adams SP, Needleman P (1984) The sequence of an atriopeptinogen: a precursor of bioactive atrial peptides. Bioch Biophys Res Commun 121:802–807

    Google Scholar 

  • Gilloteaux J, Linz D (1987) Morphological aspects of atrium development. Anat Rec 218:50a

    Google Scholar 

  • Gilloteaux J, Menu R, Jennes L, Vanderhaeghen J-J (1988a) Immunoelectron microscopical localization of ANF in fetal, neonatal, and adult atriocytes with regard to the dynamic of secretory pathway. J Cell Biochem [Suppl] 12A:103

    Google Scholar 

  • Gilloteaux J, Menu R, Jennes L, Vanderhaeghen J-J (1988b) Quantitative densitometry of immunogold labeling of ANF in hamster atrium during growth, aging, and following water deprivation. Anat Rec 220:38A

    Google Scholar 

  • Gilloteaux J, Menu R, Jennes L, Vanderhaeghen J-J (1988c) Immunoelectron microscopical localization of ANF in fetal, neonatal, and adult epicardium. 4th Int Congr Cell Biol, Montreal NRC P 1-5-9, 61

  • Glembotski CC, Gibson TR (1985) Molecular forms of immunoactive atrial natriuretic peptide released from cultured rat atrial myocytes. Biochem Biophys Res Commun 132:1008–1017

    Google Scholar 

  • Guengerich FP, Mason PS (1979) Immunological comparison of hepatic and extrahepatic cytochromes P-450. Mol Pharmacol 15:154–164

    Google Scholar 

  • Hirasaki H, Suzuki I, Tanaka J, Hanano H, Torisu M (1975) Ultrastructure research of the endocardial endothelium of monkeys. Arch Histol Jpn 38:71–84

    Google Scholar 

  • Hurle JM (1979) Scanning and light microscope studies of the development of the chick embryo semi-lunar valves. Anat Embryol 157:69–89

    Google Scholar 

  • Jamieson JD, Palade GE (1964) Specific granules in atrial muscle cells. J Cell Biol 23:151–172

    Google Scholar 

  • Kangawa K, Matsuo H (1984) Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem Biophys Res Commun 118:131–139

    Google Scholar 

  • Kangawa K, Fukuda A, Kubota I, Hayashi Y, Matsuo H (1984) Identification in rat atrial tissue of multiple forms of natriuretic polypeptides of about 3000 daltons. Biochem Biophys Res Commun 121:585–591

    Google Scholar 

  • Keeler R (1982) Atrial natriuretic factor has a direct, prostaglandin-independant action on kidneys. Can J Physiol 60:1078–1082

    Google Scholar 

  • Kisch B (1956) Electron microscopy of the atrium of the heart I Guinea pig. Exp Med Surg 14:99–112

    Google Scholar 

  • Kleinert HD, Maak T, Atlas SA, Januszewicz A, Sealey JE, Laragh JH (1984) Atrial natriuretic factor inhibits angiotensin-, norepinephrine-, and potassium-induced vascular contractility. Hypertension 6 [Suppl I]:I 143-I 147

    Google Scholar 

  • Lichnovsky V, Obruchnik M, Jirik P (1976) Ultrastructure of the atrium of the human embryonic and fetal heart. Folia Morphol (Praha) 24:225–230

    Google Scholar 

  • Los JA, Langemeijer-van Eijndthoven E (1978) The fusion of the atrioventricular endocardial cushions in the heart of the chick and the mouse embryo. Acta Morphol Neerl Scand 16:138–139

    Google Scholar 

  • Maguire KF (1972) Scanning electron microscopy of mouse endocardium and venae cordis minimae foramina. Z Anat Entwickl Gesch 139:107–114

    Google Scholar 

  • Maldonaldo CA, Saggau W, Forssmann WG (1986) Cardiodilatin-immunoreactivity in specific atrial granules of human heart revealed by the immunogold stain. Anat Embryol 173:295–298

    Google Scholar 

  • Manasek FJ (1970) Histogenesis of the embryonic myocardium. Am J Cardiol 25:149–168

    Google Scholar 

  • Manasek FJ (1976) Heart development: interactions involved in cardiac morphogenesis. In: Poste G, Nicholson G (eds) The cell surface in animal embryogenesis and development. North Holland, Amsterdam, pp 545–598

    Google Scholar 

  • Manasek FJ (1981) Determinants of heart shape in early embryos. Fed Proc 40:2011–2016

    Google Scholar 

  • Markwald RR, Fitzharris TP, Adams Smith WN (1975) Structural analysis of endocardial cytodifferentiation. Dev Biol 42:160–180

    Google Scholar 

  • Melax H, Leeson TS (1967) Fine structure of the endocardium in adult rats. Cardiovasc Res 1:349–355

    Google Scholar 

  • Metz J, Mutt V, Forssmann WE (1984) Immunohistochemical localization of cardiodilatin in myoendocrine cells of the cardiac atria Anat Embryol 170:123–127

    Google Scholar 

  • Michener ML, Gierse JK, Seetharam R, Fok KF, Olins PO, Mai MS, Needleman P (1986) Proteolytic processing of atriopeptin prohormone. Mol Pharmacol 30:552–557

    Google Scholar 

  • Misono KS, Fukumi H, Grammer RT, Inagami T (1984) Rat atrial natriuretic factor: complete amino acid sequence and disulfide linkage essential for biological activity. Biochem Biphys Res Commun 119:524–529

    Google Scholar 

  • Nakamura A, Manasek FJ (1978) Cardiac jelly fibrils: their distribution and organization. In: Rosenquist GC, Bergsma D (eds) Morphogenesis and Malformations of the Cardiovascular System. Alan R Liss New York, pp 229–250

    Google Scholar 

  • Nakamura A, Manasek FJ (1981) An experimental study of the relation of cardiac jelly to the shape of the early chick embryonic heart. J Embryol Exp Morphol 67:235–256

    Google Scholar 

  • Napier MA, Vandlen RL, Albers-Schönberg G, Nutt RF, Brady S, Lyle T, Winquist RJ, Falson EP, Heinel LA, Blaine EH (1984) Specific membrane receptors for atrial natriuretic factor in renal and vascular tissues. Proc Natl Acad Sci USA 44:1264–1274

    Google Scholar 

  • Pexieder T (1976) Rasterelektronenmikroskopische Beobachtungen der Oberfläche des Herzbulbuswülste der Hühnerembryonen. Verh Anat Ges 70:747–754

    Google Scholar 

  • Pexieder T (1980) Cellular mechanisms underlying the normal and abnormal development of the heart. In: Van Praagh R, Takao A (eds) Etiology and morphogenesis of congenital heart disease. Futura Publ Co New York, pp 127–153

    Google Scholar 

  • Pexieder T (1981) Prenatal development of the endocardium: a review. Scanning Electron Microscopy II:223–253

    Google Scholar 

  • Schünemann K (1987) Intercellular gaps in the early development of chick mural endocardium. A TEM study. Anat Embryol 175:375–378

    Google Scholar 

  • Schwartz D, Geller DM, Manning PT, Siegel NR, Fok KF, Smith CE, Needleman P (1985) Ser-Leu-Arg-Atriopeptin III: the major circulating form of atrial peptide. Science 229:397–400

    Google Scholar 

  • Scott JN, Jennes L (1987) Distribution of atrial natriuretic factor in fetal rat atria and ventricles. Cell Tissue Res 248:479–481

    Google Scholar 

  • Song SH (1977) Endocardial surface structures of the feline heart observed with a scanning electron microscope. Acta Anat (Basel) 99:67–78

    Google Scholar 

  • Sonnenberg H, Cupples WA (1982) Intrarenal localization of the natriuretic effect of cardiac atrial extract. Can J Physiol Pharmacol 60:67–75

    Google Scholar 

  • Thompson RP, Simson JAV, Currie MG (1986) Atriopeptin distribution in the developing rat heart. Anat Embryol 175:227–233

    Google Scholar 

  • Toshimori H, Toshimori K, Oura C, Hisayuki M (1987) Immunohistochemical study of atrial natriuretic polypeptides in the embryonic, fetal, and neonatal rat heart. Cell Tissue Res 248:627–633

    Google Scholar 

  • Trippodo NC, Cole FE, MacPhee AA, Pegram BL (1987) Biologic mechanisms of atrial natriuretic factor. J Lab Clin Med 109:112–119

    Google Scholar 

  • Tulassay T, Rascher W, Seyberth HW, Lang RE, Toth M, Sulyok E (1986) Role of atrial natriuretic peptide in sodium homeostasis in premature infants. J Pediatr 109:1023–1027

    Google Scholar 

  • Wheeler EE, Gavin JB, Herdson PB (1973) A study of endocardial endothelium using freeze-drying and scanning electron microscopy. Anat Rec 175:579–584

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilloteaux, J. Ultrastructural aspects of atrium development: demonstration of endocardial discontinuities and immunolabeling of atrial natriuretic factor in the Syrian hamster. Anat Embryol 179, 227–236 (1989). https://doi.org/10.1007/BF00326587

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326587

Key words

Navigation