Skip to main content

Two-Photon Photopolymerization and 3D Lithographic Microfabrication

  • Chapter
  • First Online:
NMR • 3D Analysis • Photopolymerization

Part of the book series: Apvances in Polymer Science ((POLYMER,volume 170))

Abstract

This chapter attempts to give an overview of the historical development and current progress of femtosecond laser micro-nanofabrication based on multiphoton absorption, and particular emphasis is placed on two-photon photopolymerization. Femtosecond laser interaction with matter differs essentially from those with longer pulses or CW lasers in its significant nonlinearity, ultrafast characteristics and the possibility of highly localization of reaction volume. These features enable three-dimensional (3D) micro-nanofabrication in solid and liquid media. In two-photon photopolymerization, when a near-infrared femtosecond laser is tightly focused into a photopolymerizable resin, 3D polymer micro-nanostructures are produced by pinpoint photopolymerization of liquid precursory resins. Using this direct laser writing scheme, various photonic, micro-optical components and micromechanical devices have been readily produced. The two-photon photopolymerization technology is expected to play a similar role to that played by lithography for planar semiconductor device processing, but for micro-nanofabrication of 3D polymer-based optoelectronic devices as well for microelectromechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

AFM:

Atomic force microscope

B1536:

1,2-Dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethane

BCC:

Body-centered cubic

BSA:

Bovin serum albumin

CAM:

Computer-aided manufacturing

CAD:

Computer-aided design

CCD:

Charge coupled device

CW:

Continuous wave

DBR:

Distributed Bragg reflection

DFB:

Distributed feedback

DMF:

Dimethyl formamide

FCC:

Face-centered cubic

FWHM:

Full width at half maximum

HCP:

Hexagonal close packing

IR:

Infrared

LD:

Laser diode

LED:

Light emitting diode

?CP:

Microcontact printing

MEMS:

Microelectromechanical system

MMA:

Methyl methacrylate

MW:

Molecular weight

NA:

Mumerical aperture

NIR:

Near-infrared

NSOM:

Near-field scanning optical microscope

PAG:

Photoacid generator

PBG:

Photonic bandgap

PDMS:

Poly(dimethyl siloxane)

PhC:

Photonic crystal

PMMA:

Poly(methyl methacrylate)

PSF:

Point spread function

PVK:

Poly(vinyl carbazole)

PZT:

Lead zirconate titanate

R:

Radical

RB:

Rose Bengal

S:

Photosensitizer

SC:

Simple cubic

SDL:

Sub-diffraction-limited

SEM:

Scanning electron microscope

SLI:

Square of light intensity

SLM:

Spatial light modulator

STM:

Scanning tunneling microscope

TE:

Transverse electric

THPMA:

Tetrahydropyranyl methacrylate

TM:

Transverse magnetic

TPA:

Two-photon absorption

TPE:

Two-photon excitation

UV:

Ultraviolet

Voxel:

Volume element

XUV:

Extreme UV

n :

Refractive index

? :

Two-photon absorption cross-section

? :

Electrical permittivity

T g :

Glass transition temperature

E :

Electric field strength; Young’s modulus

I :

Light intensity

? :

Wavelength

? :

Lightwave frequency

l c,:

Coherence length

Q :

Quality factor

? 0,:

Beam waist of Gaussian beam

Z R :

Rayleigh depth

? H+ :

Quantum efficiency of proton generation

G s :

Shear modulus

References

  1. Odian G (1991) Principles of polymerization, 3rd edn. Wiley, New York

    Google Scholar 

  2. Fouassier JP, Rabek JF (1990) Lasers in polymer science and technology. CRC Press, Boca Taton, FL

    Google Scholar 

  3. Reiser A (1989) Photoreactive polymers: The science and technology of resists. Wiley, New York

    Google Scholar 

  4. Fouassier JP, Rabek JF (1993) (eds) Radiation curing in polymer science and technology. Elsevier, London

    Google Scholar 

  5. Fouassier JP (1995) Photoinitiation, photopolymerization and photocuring: Fundamentals and applications. Hanser, Munich Vienna New York

    Google Scholar 

  6. Nakagawa T, Marutani Y (1996) (eds) Layered manufacturing systems: the latest development of three-dimensional copying technnologies (in Japanese). Kogyo Chosakai, Japan

    Google Scholar 

  7. Zhang X, Jiang XN, Sun C (1999) Sensor Actuat 77:149

    Google Scholar 

  8. Jiang XN, Sun C, Zhang X, Xu B, Ye YH (2000) Sensor Actuat 87:72

    Google Scholar 

  9. Bertsch A, Lorenz H, Renaud (1999) Sensor Actuat 73:14

    Google Scholar 

  10. Maruo S, Nakamura O, Kawata S (1997) Opt Lett 22:132

    Google Scholar 

  11. Parthenopoulos DA, Rentzepis PM (1989) Science 245:843

    Google Scholar 

  12. Denk W, Strickler JH, Webb WW (1990) Science 248:73

    Google Scholar 

  13. Kawata S, Sun HB, Tanaka T, Takada K (2001) Nature 412:697

    Google Scholar 

  14. Tanaka T, Sun HB, Kawata S (2002) Appl Phys Lett 80:312

    Google Scholar 

  15. Sun HB, Matsuo S, Misawa H (1999) Appl Phys Lett 74:786

    Google Scholar 

  16. Sun HB, Kawakami T, Xu Y, Ye JY, Matsuo S, Misawa H, Miwa M, Kaneko R (2000) Opt Lett 25:1110

    Google Scholar 

  17. Sun HB, Mizeikis V, Xu Y, Juodkazis S, Ye JY, Matsuo S, Misawa H (2001) Appl Phys Lett 79:1

    Google Scholar 

  18. Sun HB, Tanaka T, Takada K Kawata S (2001) Appl Phys Lett 79:1411

    Google Scholar 

  19. Sun HB, Takada K, Kawata S (2001) Appl Phys Lett 79:3173

    Google Scholar 

  20. Sun HB, Tanaka T, Kawata S (2002) Appl Phys Lett 80:3673

    Google Scholar 

  21. Albota M, Beljonne D, Bredas JL, Ehrlich JE, Fu JY, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughon D, Perry JW, Rockel H, Rumi M, Subramaniam C, Webb WW, Wu XL, Xu C (1998) Science 281:1653

    Google Scholar 

  22. Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee IYS, McCord-Maughon D, Qin JQ, Rockel H, Rumi M, Wu XL, Marder SR, Perry JW (1999) Nature 398:51

    Google Scholar 

  23. Zhou WH, Kuebler SM, Braun KL, Yu TY, Cammack JK, Ober CK, Perry JW, Marder SR (2002) Science 296:1106

    Google Scholar 

  24. Belfield KD, Schafer KJ, Liu YU, Liu J, Ren XB, Van Stryland EW (2000) J Phys Org Chem 13:837

    Google Scholar 

  25. Bhawalkar JD, He GS, Prasad PN (1996) Rep Prog Phys 59:1041

    Google Scholar 

  26. Lehmann O, Stuke M (1995) Science 270:1644

    Google Scholar 

  27. Wanke MC, Lehmann O, Muller K, Wen QZ, Stuke M (1997) Science 275:1284

    Google Scholar 

  28. Daneshvar K, Raissi M, Bobbio SM (2000) J Appl Phys 88:2205

    Google Scholar 

  29. Shiomi M, Yoshidome A, Abe F, Osakada K (1999) Int J Mach Tool Manu 39:237

    Google Scholar 

  30. Zhang YZ, Shi LK, Zhang PZ, Xu J (2000) Rare Metal Mat Eng 29:361

    Google Scholar 

  31. Sun HB, Xu Y, Juodkazis S, Sun K, Watanabe M, Matsuo S, Misawa H, Nishii J (2001) Opt Lett 26:325

    Google Scholar 

  32. Sun HB, Xu Y, Matsuo S, Misawa H (1999) Opt Rev 6:396

    Google Scholar 

  33. Menzel R (2001) Photonics: Linear and nonlinear interactions of laser light and matter, Springer, Berlin Heidelberg New York

    Google Scholar 

  34. Saleh BEA, Teich MC (1991) Fundamentals of photonics. Wiley, New York

    Google Scholar 

  35. Milonni PW, Eberly JH ( 1988) Lasers. Wiley, New York

    Google Scholar 

  36. Mei DB, Cheng BY, Hu W, Li ZL, Zhan DH (1995) Opt Lett 20:429

    Google Scholar 

  37. Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ (2000) Nature 404:53

    Google Scholar 

  38. Shoji S, Kawata S (2000) Appl Phys Lett 76:2668

    Google Scholar 

  39. Kondo T, Matsuo S, Juodkazis S, Misawa H (2001) Appl Phys Lett 79:725

    Google Scholar 

  40. Allmen M, Blatter A (1995) Laser-beam interactions with materials. 2nd edn. Springer Berlin Heidelberg New York

    Google Scholar 

  41. Grigoryants AG (1994) Basics of laser material processing. CRC, New York

    Google Scholar 

  42. Shen YR (1984) The principles of nonlinear optics. Wiley, New York

    Google Scholar 

  43. Boyd RW (1992) Nonlinear optics. Academic, San Diego

    Google Scholar 

  44. Kieffer JC, Matte JP, Belair S, Chaker M, Audebert P, Pepin H, Maine P, Strickland D, Bado P, Mourou G (1989) IEEE J Quantum Elect 25:2640

    Google Scholar 

  45. Bado P (2000) Laser Focus World 36:73

    Google Scholar 

  46. Diels JC, Rudolph W (1996) Ultrashort laser pulse phenomena: fundamentals, techniques, and applications on a femtosecond time scale (Optics and Photonics). Academic, New York

    Google Scholar 

  47. Saeta P, Wang JK, Siegal Y, Bloembergen N, Mazur E (1991) Phys Rev Lett 67:1023

    Google Scholar 

  48. Glezer EN, Milosavljevic M, Huang L, Finlay RJ, Her TH, Callan JP, Mazur E (1996) Opt Lett 21:2023

    Google Scholar 

  49. Glezer EN, Mazur E (1997) Appl Phys Lett 71:882

    Google Scholar 

  50. Goeppert-Mayer M (1931) Ann Phys 9:273

    Google Scholar 

  51. Kaiser W, Garrett CGB (1961) Phys Rev Lett 7:229

    Google Scholar 

  52. Eberly JH, Lambropoulos P (1978) (eds) Multiphoton processes : proceedings of an international conference at the University of Rochester, Rochester, N.Y., June 6–9, 1977. Wiley, New York

    Google Scholar 

  53. Kano H, Kawata S (1996) Opt Lett 21:1848

    Google Scholar 

  54. Higdon PD, Torok P, Wilson T (1999) J Microsc-Oxford 193:127

    Google Scholar 

  55. Hell S, Stelzer EHK (1992) Opt Commun 93:277

    Google Scholar 

  56. Bhawalkar JD, He GS, Park CK, Zhao CF, Ruland G, Prasad PN (1996) Opt Commun 124:33

    Google Scholar 

  57. He GS, Xu GC, Prasad PN, Reinhardt BA, Bhatt JC, Dillard AG (1995) Opt Lett 20:435

    Google Scholar 

  58. Fisher WG, Partridge WP, Dees C, Wachter EA (1997) Photochem Photobiol 66:141

    Google Scholar 

  59. He GS, Bhawalkar JD, Zhao CF, Park CK, Prasad PN (1995) Opt Lett 20:2393

    Google Scholar 

  60. Smith NI, Fujita K, Nakamura O, Kawata S (2001) Appl Phys Lett 78:999

    Google Scholar 

  61. Schaffer CB, Nishimura N, Glezer EN, Kim AMT, Mazur E (2002) Opt Express 10:196

    Google Scholar 

  62. Strickler JH, Webb WW (1991) Opt Lett 16:1780

    Google Scholar 

  63. Kawata S, Kawata Y (2000) Chem Rev 100:1777

    Google Scholar 

  64. Liphardt M, Goonesekera A, Jones BE, Ducharme S, Takacs JM, Zhang L (1994) Science 263:367

    Google Scholar 

  65. Moerner WE (1987) (ed) Persistent spectral hole burning: Science and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  66. Kim MK, Kachru R (1989) Opt Lett 14:423

    Google Scholar 

  67. Irie M (2000) Chem Rev 100:1685

    Google Scholar 

  68. Toriumi A, Herrmann JM, Kawata S (1997) Opt Lett 22:555

    Google Scholar 

  69. Sekkat Z, Knoll WJ (1995) J Opt Soc Am B 12:1855

    Google Scholar 

  70. Toriumi A, Kawata S, Gu M (1998) Opt Lett 23:1924

    Google Scholar 

  71. Kawata Y, Ishitobi H, Kawata S (1998) Opt Lett 23:756

    Google Scholar 

  72. Meerholz K, Volodin BL, Sandalphon, Kippelen B, Peyghambarian, N (1994) Nature 371:497

    Google Scholar 

  73. Day D, Gu M, Smallridge A (2001) Adv Mater 13:1005

    Google Scholar 

  74. Day D, Gu M (1999) Opt Lett 24:288

    Google Scholar 

  75. Tanaka T, Yamaguchi K, Yamamoto S (2002) Opt Commun 212:45

    Google Scholar 

  76. Qiu JR, Kojima K, Miura K, Mitsuyu T, Hirao K (1999) Opt Lett 24:786

    Google Scholar 

  77. Miura K, Qiu JR, Fujiwara S, Sakaguchi S, Hirao K (2002) Appl Phys Lett 80:2263

    Google Scholar 

  78. Sun HB, Juodkazis S, Watanabe M, Matsuo S, Misawa H, Nishii J (2000) J Phys Chem B 104:3450

    Google Scholar 

  79. Yamasaki K, Juodkazis S, Watanabe M, Sun HB, Matsuo S, Misawa H (2000) Appl Phys Lett 76:1000

    Google Scholar 

  80. Watanabe M, Sun HB, Juodkazis S, Takahashi T, Matsuo S, Suzuki Y, Nishii J, Misawa H (1999) Jpn J Appl Phys 37: L1527

    Google Scholar 

  81. Watanabe M, Juodkazis S, Sun HB, Matsuo S, Misawa H, Miwa M, Kaneko R (1999) Appl Phys Lett 74:3957

    Google Scholar 

  82. Watanabe M, Juodkazis S, Sun HB, Matsuo S, Misawa H (2000) Appl Phys Lett 77:13

    Google Scholar 

  83. Watanabe M, Juodkazis S, Sun HB, Matsuo S, Misawa H (1999) Phys Rev B 60:9959

    Google Scholar 

  84. Miura K, Qiu JR, Inouye H, Mitsuyu T, Hirao K (1997) Appl Phys Lett 71:3329

    Google Scholar 

  85. Minoshima K, Kowalevicz AM, Hartl I, Ippen EP, Fujimoto JG (2001) Opt Lett 26:1516

    Google Scholar 

  86. Homoelle D, Wielandy S, Gaeta AL, Borrelli NF, Smith C (1999) Opt Lett 24:1311

    Google Scholar 

  87. Minoshima K, Kowalevicz AM, Ippen EP, Fujimoto JG (2002) Opt Express 10:645

    Google Scholar 

  88. Li Y, Watanabe W, Yamada K, Shinagawa T, Itoh K, Nishii J, Jiang YY (2002) Appl Phys Lett 80:1508

    Google Scholar 

  89. Kawamura K, Sarukura N, Hirano M, Hosono H (2001) Appl Phys Lett 78:1038

    Google Scholar 

  90. Kawamura K, Sarukura N, Hirano M, Ito N, Hosono H (2001) Appl Phys Lett 79:1228

    Google Scholar 

  91. Watanabe W, Kuroda D, Itoh K, Nishii J (2002) Opt Express 10:978

    Google Scholar 

  92. Yablonovitch E (1987) Phys Rev Lett 58:2059

    Google Scholar 

  93. John S (1987) Phys Rev Lett 58:2486

    Google Scholar 

  94. Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals: Modeling the flow of light. Princeton Univ Press, Singapore

    Google Scholar 

  95. Ho KM, Chan CT, Soukoulis (1990) Phys Rev Lett 65:3152

    Google Scholar 

  96. Fukuda K, Sun H, Matsuo S, Misawa H (1998) Jpn J Appl Phys 37: L508

    Google Scholar 

  97. Sun HB, Song JF, Xu Y, Matsuo S, Misawa H, Du GT, Liu SY (2000) J Opt Soc Am B 17:476

    Google Scholar 

  98. Sun HB, Xu Y, Ye JY, Matsuo S, Misawa H, Song JF, Du GT, Liu SY (2000) Jpn J Appl Phys 39: L591

    Google Scholar 

  99. Wu PW, Cheng W, Martini IB, Dunn B, Schwartz BJ, Yablonovitch E (2000) Adv Mater 12:1438

    Google Scholar 

  100. Stellacci F, Bauer CA, Meyer-Friedrichsen T, Wenseleers W, Alain V, Kuebler SM, Pond SJK, Zhang YD, Marder SR, Perry JW (2002) Adv Mater 14:194

    Google Scholar 

  101. Horiyama M, Sun HB, Miwa M, Matsuo S, Misawa H (1999) Jpn J Appl Phys Lett 38: L212

    Google Scholar 

  102. Maruo S, Ikuta K (2000) Appl Phys Lett 76:2656

    Google Scholar 

  103. Maruo S, Ikuta K (2002) Sensor Actuat A-Phys 100:70

    Google Scholar 

  104. Pappas SP (1985) Radiation Phys Chem25:633

    Google Scholar 

  105. Pappas SP (1992) (ed) Radiation curing science and technology. Plenum, New York

    Google Scholar 

  106. Fouassier JP, Rabek JF (1993) (eds) Radiation curing in polymer science and technology. Elsevier, London

    Google Scholar 

  107. Scully MO, Zubairy MS (1997) Cambridge Univ Press

    Google Scholar 

  108. Hopfield JJ, Worlock JM, Park KJ (1963) Phys Rev Lett 11:414

    Google Scholar 

  109. Frohlich D, Staginnus B (1967) Phys Rev Lett 19:476

    Google Scholar 

  110. Pao YH and Rentzepis PM (1965) Appl Phys Lett 6:93

    Google Scholar 

  111. Chin SL, Bedard G (1971) Phys Lett 36A: 271

    Google Scholar 

  112. Papouskova Z, Pola J, Bastl Z, Tiaskal J (1990) J Mecromol Sci Chem A27:1015

    Google Scholar 

  113. Morita H, Sadakiyo T (1995) J Photochem Photobiol A 87:163

    Google Scholar 

  114. Lee KS, Lee JH, Choi HY, Cha M, Chung MA, Kim YJ, Jung SD (2001) Mol Cryst Liq Cryst 370:155

    Google Scholar 

  115. Chung MA, Lee KS, Jung SD (2002) ETRI J 24:221

    Google Scholar 

  116. Li CD, Luo L, Wang SF, Huang WT, Gong QH, Yang YY, Feng SJ (2001) Chem Phys Lett 340:444

    Google Scholar 

  117. Belfield KD, Schafer KJ, Mourad WJ (2000) J Org Chem 65:4475

    Google Scholar 

  118. Jortner J, Ratner M (1997) (eds) Molecular electronics. Blackwell Science, London

    Google Scholar 

  119. Belfield KD, Hagan DJ, Van Stryland EW, Schafer KJ, Negres RA (1999) Org Lett 1:1575

    Google Scholar 

  120. Belfield KD, Schafer KJ, Alexander MD Jr (2000) Chem Mater 12:1184

    Google Scholar 

  121. Adronov A, Frechet JMJ, He GS, Kim KS, Chung SJ, Swiatkiewicz J, Prasad PN (2000) Chem Mater 12:2838

    Google Scholar 

  122. Hu Y (2001) MRS Bull 26:595

    Google Scholar 

  123. Adronov A, Frechet JMJ, He GS, Kim KS, Chung SJ, Swiatkiewicz J, Prasad PN (2000) Chem Mater 12:2838

    Google Scholar 

  124. Rentzepis PM (1989) US Patent 07 342 978

    Google Scholar 

  125. Bradbury S, Bracegirdle B (1998) Introduction to light microscopes. Springer, Berlin Heildelberg New York

    Google Scholar 

  126. Born M, Wolf E (1999) Principle of Optics, 7th edn. Cambridge Univ Press, Cambridge

    Google Scholar 

  127. Witzgall G, Vrijen R, Yablonovitch E, Doan V, Schwartz BJ (1998) Opt Lett 23:1745

    Google Scholar 

  128. Madou MJ (2002) Fundamentals of microfabrication: The science of miniaturization, 2nd edn. CRC Press, New York

    Google Scholar 

  129. Lyshevski SE (2002) MEMS and NEMS: Systems, devices, and structures. CRC Press, New York

    Google Scholar 

  130. (Anon) (2002) Laser Focused World 38 11

    Google Scholar 

  131. Cartlidge E (2002) Phys World 15:10

    Google Scholar 

  132. Quake SR, Scherer A (2000) Science 290:1536

    Google Scholar 

  133. Xia YN, Whitesides GM (1998) Ann Rev Mater Sci 28:153

    Google Scholar 

  134. Kumar A, Whitesides GM (1993) Appl Phys Lett 63:2002

    Google Scholar 

  135. Chou SY, Krauss PR, Renstrom PJ (1995) Appl Phys Lett 67:3114

    Google Scholar 

  136. Kim E, Xia Y, Whitesides GM (1995) Nature 376:581

    Google Scholar 

  137. Terris BD, Mamin HJ, Best ME, Logan JA, Rugar D (1996) Appl Phys Lett 69:4262

    Google Scholar 

  138. Masuda H, Fukuda K (1995) Science 268:1446

    Google Scholar 

  139. Xia Y, Kim E, Zhao X-M, Rogers JA, Prentiss M, Whitesides GM (1996) Science 273:347

    Google Scholar 

  140. Wu ES, Strickler JH, Harrell WR, Webb WW (1990) SPIE Proc 1674:776

    Google Scholar 

  141. Maruo S, Kawata S (1998) J IEEE MEMS, 7:411

    Google Scholar 

  142. Wu PW, Dunn B, Yablonovitch E, Doan V, Schwartz BJ (1999) J Opt Soc Am B 16:605

    Google Scholar 

  143. Brodeur A, Chin SL (1999) J Opt Soc Am B 16:637

    Google Scholar 

  144. Stuart BC, Feit MD, Herman S, Rubenchik AM, Shore BW, Perry MD (1996) Phys Rev B 53:1749

    Google Scholar 

  145. vonderLinde D, Schuler H (1996) J Opt Soc Am B 13:216

    Google Scholar 

  146. Boiko Y, Costa JM, Wang M, Esener S (2001) Opt Express 8:571

    Google Scholar 

  147. Joshi MP, Pudavar HE, Swiatkiewicz J, Prasad PN, Reianhardt BA (1999) Appl Phys Lett 74:170

    Google Scholar 

  148. Kirkpatrick SM, Baur JW, Clark CM, Denny LR, Tomlin DW, Reinhardt BR, Kannan R, Stone MO (1999) Appl Phys A 69:461

    Google Scholar 

  149. Matsumoto K (1997) P IEEE 85:612

    Google Scholar 

  150. Sauer BB, McLean RS, Thomas RR (1998) Langmuir 14:3045

    Google Scholar 

  151. Tarun A, Daza MRH, Hayazawa N, Inouye Y, Kawata S (2002) Appl Phys Lett 80:3400

    Google Scholar 

  152. Flory PJ (1952) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  153. Schulz GV (1997) Chem Ber 80:232

    Google Scholar 

  154. Bolon DA, Webb KK (1978) J Appl Polymer Sci 22:2543

    Google Scholar 

  155. Decker C, Faure J, Fizet M, Rychla L (1979) Photog Sci Eng 23:137

    Google Scholar 

  156. Hageman HJ (1985) Prog Organic Coatings 13:123

    Google Scholar 

  157. Booth MJ, Wilson T (2001) J Biomed Opt 6:266

    Google Scholar 

  158. Booth MJ, Wilson T (2001) J Microsc-Oxford 201:416

    Google Scholar 

  159. Booth MJ, Neil MAA, Juskaitis R, Wilson T (2002) P Natl Acad Sci USA 99:5788

    Google Scholar 

  160. Fujimoto M, Aoshima S, Hosoda M, Tsuchiya Y (1999) Opt Lett 24:850

    Google Scholar 

  161. DeVoe RJ, Kalveit H, Leatherdale CA, Williams TR (2002) Proc SPIE

    Google Scholar 

  162. Stamners J (1986) Waves in focal region. Adam Hilgar, Bristol

    Google Scholar 

  163. Gu M (1999) Advanced optical imaging Theory. Springer, Berlin Heidelberg New York

    Google Scholar 

  164. Bahlmann K, Hell SW (2000) Appl Phys Lett 77:612

    Google Scholar 

  165. T. Wilson (1990) (ed) Confocal microscopy. Academic, London

    Google Scholar 

  166. Berger V, GauthierLafaye O, Costard E (1997) J Appl Phys 82:60

    Google Scholar 

  167. Berger V, GauthierLafaye O, Costard E (1997) Electron Lett 33:425

    Google Scholar 

  168. Nakata Y, Okada T, Maeda M (2002) 81: 4239

    Google Scholar 

  169. Sharp DN, Campbell M, Dedman ER, Harrison MT, Denning RG, Turberfield A (2002) J Opt Quant Electron 34:3

    Google Scholar 

  170. Yang S, Megens M, Aizenberg J, Wiltzius P, Chaikin PM, Russel WB (2002) Chem Mater 14:2831

    Google Scholar 

  171. Segawa H, Yoshida K, Kondo T, Matsuo S, Misawa H (2003) J Sol-Gel Sci Techn 26:1023

    Google Scholar 

  172. Campagnola PJ, Delguidice DM, Epling GA, Hoffacker KD, Howell AR, Pitts JD, Goodman SL (2000) Macromolecules 33:1511

    Google Scholar 

  173. Nakayama Y, Matsuda T (1999) J Biomed Mater Res 48:511

    Google Scholar 

  174. Okino H, Nakayama Y, Tanaka M, Matsuda T (2002) J Biomed Mater Res 59:233

    Google Scholar 

  175. Pitts JD, Campagnola PJ, Epling GA, Goodman SL (2000) Macromolecules 33:1514

    Google Scholar 

  176. Zhou WH, Kuebler SM, Carrig D, Perry JW, Marder SR (2002) J Am Chem Soc 124:1897

    Google Scholar 

  177. Zhou WH, Kuebler SM, Braun KL, Yu TY, Cammack JK, Ober CK, Perry JW, Marder SR (2002) Science 296:1106

    Google Scholar 

  178. Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondia JP, Ozin GA, Toader O, van Driel HM (2000) Nature 405:437

    Google Scholar 

  179. Gruning U, Lehmann V, Engelhardt CM (1995) Appl Phys Lett 66:3254

    Google Scholar 

  180. Xu Y, Sun HB, Ye JY, Matsuo S, Misawa H (2001) J Opt Soc Am B 18: 1084

    Google Scholar 

  181. Noda S, Tomoda K, Yamamoto N, Chutinan A (2000) Science 289:604

    Google Scholar 

  182. Kawakami S (1997) Electron Lett 33:1260

    Google Scholar 

  183. Biswas R, Chan CT, Sigalas M, Soukoulis CM, Ho KM (1995) In: Soukoulis CM (ed) Photonic band gap materials. Kluwer Academic Press, London, p 23

    Google Scholar 

  184. Straub M, Gu M (2002) Opt Lett 27:1824

    Google Scholar 

  185. Noda S, Chutinan A, Imada M (2000) Nature 407:608

    Google Scholar 

  186. Noda S, Yokoyama M, Imada M, Chutinan A, Mochizuki M (2001) Science 293:1123

    Google Scholar 

  187. Salaneck WR, Seki K, Kahn A, Pireaux JJ (2001) (eds) Conjugated polymer and molecular interfaces: science and technology for photonic and optoelectronic applications. Marcel Dekker, New York

    Google Scholar 

  188. Taton TA, Norris DJ (2002) Nature 416:685

    Google Scholar 

  189. Lee WM, Pruzinsky SA, Braun PV (2002) Adv Mater 14:271

    Google Scholar 

  190. Ashkin A (1970) Phys Rev Lett 24:156

    Google Scholar 

  191. Ashkin A, Schutze K, Dziedzic JM, Eutenuer U, Schliwa M (1990) Nature 348:346

    Google Scholar 

  192. Ashkin A (1992) Biophys J 61:569

    Google Scholar 

  193. Higurashi E, Sawada R, Ito T (1998) Appl Phys Lett 71:2951

    Google Scholar 

  194. Gauthier RC (1995) Appl Phys Lett 67:2269

    Google Scholar 

  195. Galajda P, Ormos P (2001) Appl Phys Lett 78:249

    Google Scholar 

  196. Friese MEJ, Enger J, Rubinsztein-Dunlop H, Heckenberg NR (1996) Phys Rev A 54:1593

    Google Scholar 

  197. He H, Friese MEJ, Heckenberg NR, Rubinsztein-Dunlop H (1995) Phys Rev Lett 75:826

    Google Scholar 

  198. Sekkat Z, Knoll W (2002) (eds) Photorefractive organic thin films. Academic, New York

    Google Scholar 

  199. Kaneuchi Y, Kawai T, Hamaguchi M, Yoshino K, Irie M (1997) Jpn J Appl Lett, 36:3736

    Google Scholar 

  200. Masuda S, Sertowa N, Petkov I (1997) J Polymer Sci A 35:3683

    Google Scholar 

  201. Watanabe T, Akiyama M, Totani K, Kuebler SM, Stellacci F, Wenseleers W, Braun K, Marder SR, Perry JW (2002) Adv Funct Mater 12:611

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Bo Sun or Satoshi Kawata .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Sun, HB., Kawata, S. (2004). Two-Photon Photopolymerization and 3D Lithographic Microfabrication. In: NMR • 3D Analysis • Photopolymerization. Apvances in Polymer Science, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b94405

Download citation

  • DOI: https://doi.org/10.1007/b94405

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20510-4

  • Online ISBN: 978-3-540-40000-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics