Skip to main content

Advertisement

Log in

Mouse Bone Marrow-Derived Mesenchymal Stem Cells Alleviate Perinatal Brain Injury Via a CD8+ T Cell Mechanism in a Model of Intrauterine Inflammation

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The objective of this study was to determine if mouse bone marrow-derived mesenchymal stem cells (BMMSCs) ameliorate preterm birth and perinatal brain injury induced by intrauterine inflammation (IUI). A mouse model of IUI-induced perinatal brain injury at embryonic (E) day 17 was utilized. BMMSCs were derived from GFP-transgenic mice and phenotypically confirmed to be CD44+, Sca-1+, CD45, CD34, CD11b, and CD11c by flow cytometry and sorted by fluorescence-activated cell sorting (FACS). Dams were assigned to four groups: phosphate-buffered saline (PBS) + PBS, PBS + BMMSCs, lipopolysaccharide (LPS) + PBS, and LPS + BMMSCs. Following maternal IUI, there was a significant increase in CD8+ T cells in the placentas. Maternally administered BMMSCs trafficked to the fetal side of the placenta and resulted in significantly decreased placental CD8+ T cells. Furthermore, fetal trafficking of maternally administered BMMSCs correlated with an improved performance on offspring neurobehavioral testing in LPS + BMMSC group compared with LPS + PBS group. Our data support that maternal administration of BMMSCs can alleviate perinatal inflammation-induced brain injury and improve neurobehavioral outcomes in the offspring via CD8+ T cell immunomodulation at the feto-placental interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7 

Similar content being viewed by others

References

  1. Behrman REBS. Preterm birth: causes, consequences, and prevention. Washington DC: National Academies Press; 2007.

    Google Scholar 

  2. Lin CY, Chang YC, Wang ST, Lee TY, Lin CF, Huang CC. Altered inflammatory responses in preterm children with cerebral palsy. Ann Neurol. Aug 2010;68(2):204–12.

    CAS  PubMed  Google Scholar 

  3. Grether JK, Nelson KB. Maternal infection and cerebral palsy in infants of normal birth weight. JAMA. 1997;278(3):207–11.

    Article  CAS  PubMed  Google Scholar 

  4. Meyer U, Feldon J, Schedlowski M, Yee BK. Immunological stress at the maternal-foetal interface: a link between neurodevelopment and adult psychopathology. Brain Behav Immun. 2006;20(4):378–88.

    Article  CAS  PubMed  Google Scholar 

  5. Erdei C, Dammann O. The perfect storm: preterm birth, neurodevelopmental mechanisms, and autism causation. Perspect Biol Med. 2014;57(4):470–81.

    Article  PubMed  Google Scholar 

  6. Younge N, Goldstein RF, Bann CM, et al. Survival and Neurodevelopmental Outcomes among Periviable Infants. N Engl J Med. 2017;376(7):617–28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Burd I, Balakrishnan B, Kannan S. Models of fetal brain injury, intrauterine inflammation, and preterm birth. Am J Reprod Immunol. 2012;67(4):287–94.

    Article  CAS  PubMed  Google Scholar 

  8. Adams-Chapman I, Heyne RJ, DeMauro SB, et al. Neurodevelopmental impairment among extremely preterm infants in the neonatal research network. Pediatrics. 2018;141:5.

    Article  Google Scholar 

  9. Regalia MJ. Mesenchymal stem cells: "guardians of inflammation". Wounds. Jan 2017;29(1):20–7.

    Google Scholar 

  10. Drommelschmidt K, Serdar M, Bendix I, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun. 2017;60:220–32.

    Article  CAS  PubMed  Google Scholar 

  11. Soleymaninejadian E, Pramanik K, Samadian E. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol. Jan 2012;67(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  12. Moore AG, Brown DA, Fairlie WD, Bauskin AR, Brown PK, Munier ML, et al. The transforming growth factor-ss superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women. J Clin Endocrinol Metab. 2000;85(12):4781–8.

    CAS  PubMed  Google Scholar 

  13. Lei J, Firdaus W, Rosenzweig JM, et al. Murine model: maternal administration of stem cells for prevention of prematurity. Am J Obstet Gynecol. 2015;212(5):639–e631–610.

    Article  PubMed  Google Scholar 

  14. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.

    Article  CAS  PubMed  Google Scholar 

  15. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105(7):2821–7.

    Article  CAS  PubMed  Google Scholar 

  16. Tsimis ME, Lei J, Rosenzweig JM, et al. P2X7 receptor blockade prevents preterm birth and perinatal brain injury in a mouse model of intrauterine inflammation. Biol Reprod. 2017;97(2):230–9.

    Article  PubMed  Google Scholar 

  17. Lei J, Rosenzweig JM, Mishra MK, et al. Maternal dendrimer-based therapy for inflammation-induced preterm birth and perinatal brain injury. Sci Rep. 2017;7(1):6106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Novak CM, Ozen M, McLane M, Alqutub S, Lee JY, Lei J, et al. Progesterone improves perinatal neuromotor outcomes in a mouse model of intrauterine inflammation via immunomodulation of the placenta. Am J Reprod Immunol. 2018;79(5):e12842.

    Article  PubMed  CAS  Google Scholar 

  19. Mortezaee K, Pasbakhsh P, Ragerdi Kashani I, Sabbaghziarani F, Omidi A, Zendedel A, et al. Melatonin pretreatment enhances the homing of bone marrow-derived mesenchymal stem cells following transplantation in a rat model of liver fibrosis. Iran Biomed J. 2016;20(4):207–16.

    PubMed  PubMed Central  Google Scholar 

  20. Mashimo T, Sato Y, Akita D, Toriumi T, Namaki S, Matsuzaki Y, et al. Bone marrow-derived mesenchymal stem cells enhance bone marrow regeneration in dental extraction sockets. J Oral Sci. 2019;61(2):284–93.

    Article  PubMed  Google Scholar 

  21. Yu J, Yin S, Zhang W, et al. Hypoxia preconditioned bone marrow mesenchymal stem cells promote liver regeneration in a rat massive hepatectomy model. Stem Cell Res Ther. 2013;4(4):83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gao Q, Wang S, Chen X, et al. Cancer-cell-secreted CXCL11 promoted CD8(+) T cells infiltration through docetaxel-induced-release of HMGB1 in NSCLC. J Immunother Cancer. 2019;7(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sauty A, Colvin RA, Wagner L, Rochat S, Spertini F, Luster AD. CXCR3 internalization following T cell-endothelial cell contact: preferential role of IFN-inducible T cell alpha chemoattractant (CXCL11). J Immunol. 2001;167(12):7084–93.

    Article  CAS  PubMed  Google Scholar 

  24. Lei J, Xie L, Zhao H, Gard C, Clemens JL, McLane M, et al. Maternal CD8(+) T-cell depletion alleviates intrauterine inflammation-induced perinatal brain injury. Am J Reprod Immunol. 2018;79(5):e12798.

    Article  PubMed  CAS  Google Scholar 

  25. Breen K, Brown A, Burd I, Chai J, Friedman A, Elovitz MA. TLR-4-dependent and -independent mechanisms of fetal brain injury in the setting of preterm birth. Reprod Sci. 2012;19(8):839–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Komai-Koma M, Gilchrist DS, Xu D. Direct recognition of LPS by human but not murine CD8+ T cells via TLR4 complex. Eur J Immunol. 2009;39(6):1564–72.

    Article  CAS  PubMed  Google Scholar 

  27. Arenas-Hernandez M, Romero R, Xu Y, et al. Effector and activated T cells induce preterm labor and birth that is prevented by treatment with progesterone. J Immunol. 2019;202(9):2585–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sobek V, Birkner N, Falk I, Würch A, Kirschning CJ, Wagner H, et al. Direct toll-like receptor 2 mediated co-stimulation of T cells in the mouse system as a basis for chronic inflammatory joint disease. Arthritis Res Ther. 2004;6(5):R433–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cottalorda A, Verschelde C, Marcais A, et al. TLR2 engagement on CD8 T cells lowers the threshold for optimal antigen-induced T cell activation. Eur J Immunol. 2006;36(7):1684–93.

    Article  CAS  PubMed  Google Scholar 

  30. Ben-Sasson SZ, Hogg A, Hu-Li J, et al. IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells. J Exp Med. 2013;210(3):491–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Novais FO, Carvalho AM, Clark ML, Carvalho LP, Beiting DP, Brodsky IE, et al. CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-1beta production. PLoS Pathog. 2017;13(2):e1006196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Novak CM, Lee JY, Ozen M, et al. Increased placental T cell trafficking results in adverse neurobehavioral outcomes in offspring exposed to sub-chronic maternal inflammation. Brain Behav Immun. 2019;75:129–36.

    Article  CAS  PubMed  Google Scholar 

  33. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. Aug 2007;25(8):2082–6.

    Article  CAS  PubMed  Google Scholar 

  34. Taylor SL, Burnam MA, Sherbourne C, Andersen R, Cunningham WE. The relationship between type of mental health provider and met and unmet mental health needs in a nationally representative sample of HIV-positive patients. J Behav Health Serv Res. 2004;31(2):149–63.

    Article  PubMed  Google Scholar 

  35. Yagi H, Soto-Gutierrez A, Parekkadan B, et al. Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant. 2010;19(6):667–79.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yagi H, Soto-Gutierrez A, Kitagawa Y, Tilles AW, Tompkins RG, Yarmush ML. Bone marrow mesenchymal stromal cells attenuate organ injury induced by LPS and burn. Cell Transplant. 2010;19(6):823–30.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ding L, Li X, Sun H, Su J, Lin N, Péault B, et al. Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus. Biomaterials. 2014;35(18):4888–900.

    Article  CAS  PubMed  Google Scholar 

  38. Du H, Taylor HS. Stem cells and reproduction. Curr Opin Obstet Gynecol. 2010;22(3):235–41.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wagenaar N, de Theije CGM, de Vries LS, Groenendaal F, Benders M, Nijboer CHA. Promoting neuroregeneration after perinatal arterial ischemic stroke: neurotrophic factors and mesenchymal stem cells. Pediatr Res. 2018;83(1–2):372–84.

    Article  CAS  PubMed  Google Scholar 

  40. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest. 2004;113(12):1701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen X, Liu Q, Huang W, et al. Stanniocalcin-2 contributes to mesenchymal stromal cells attenuating murine contact hypersensitivity mainly via reducing CD8(+) Tc1 cells. Cell Death Dis. 2018;9(5):548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. De Martino M, Zonta S, Rampino T, et al. Mesenchymal stem cells infusion prevents acute cellular rejection in rat kidney transplantation. Transplant Proc. 2010;42(4):1331–5.

    Article  PubMed  Google Scholar 

  43. Gazdic M, Simovic Markovic B, Jovicic N, et al. Mesenchymal stem cells promote metastasis of lung cancer cells by downregulating systemic antitumor immune response. Stem Cells Int. 2017;2017:6294717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Togha M, Jahanshahi M, Alizadeh L, Jahromi SR, Vakilzadeh G, Alipour B, et al. Rapamycin augments immunomodulatory properties of bone marrow-derived mesenchymal stem cells in experimental autoimmune encephalomyelitis. Mol Neurobiol. 2017;54(4):2445–57.

    Article  CAS  PubMed  Google Scholar 

  45. Spaggiari GM, Moretta L. Interactions between mesenchymal stem cells and dendritic cells. Adv Biochem Eng Biotechnol. 2013;130:199–208.

    PubMed  Google Scholar 

  46. Kim JS, Romero R, Kim MR, Kim YM, Friel L, Espinoza J, et al. Involvement of Hofbauer cells and maternal T cells in villitis of unknown aetiology. Histopathology. 2008;52(4):457–64.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim ES, Ahn SY, Im GH, Sung DK, Park YR, Choi SH, et al. Human umbilical cord blood-derived mesenchymal stem cell transplantation attenuates severe brain injury by permanent middle cerebral artery occlusion in newborn rats. Pediatr Res. 2012;72(3):277–84.

    Article  CAS  PubMed  Google Scholar 

  48. Donega V, Nijboer CH, van Tilborg G, Dijkhuizen RM, Kavelaars A, Heijnen CJ. Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury. Exp Neurol. 2014;261:53–64.

    Article  CAS  PubMed  Google Scholar 

  49. Wei ZZ, Gu X, Ferdinand A, Lee JH, Ji X, Ji XM, et al. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats. Cell Transplant. 2015;24(3):391–402.

    Article  PubMed  Google Scholar 

  50. Fleiss B, Guillot PV, Titomanlio L, Baud O, Hagberg H, Gressens P. Stem cell therapy for neonatal brain injury. Clin Perinatol. 2014;41(1):133–48.

    Article  PubMed  Google Scholar 

  51. Zhao K, Lou R, Huang F, Peng Y, Jiang Z, Huang K, et al. Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  52. Qin Y, Zhuo L, Cai J, He X, Liu B, Feng C, et al. In vivo monitoring of magnetically labeled mesenchymal stem cells homing to rabbit hepatic VX2 tumors using magnetic resonance imaging. Mol Med Rep. 2018;17(1):452–8.

    CAS  PubMed  Google Scholar 

  53. Caballero S, Kent DL, Sengupta N, et al. Bone marrow-derived cell recruitment to the neurosensory retina and retinal pigment epithelial cell layer following subthreshold retinal phototherapy. Invest Ophthalmol Vis Sci. 2017;58(12):5164–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao M, Mao J, Duan X, et al. In vivo tracking of the tropism of mesenchymal stem cells to malignant gliomas using reporter gene-based MR imaging. Int J Cancer. 2018;142(5):1033–46.

    Article  CAS  PubMed  Google Scholar 

  55. Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54(24):2277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kollar K, Cook MM, Atkinson K, Brooke G. Molecular mechanisms involved in mesenchymal stem cell migration to the site of acute myocardial infarction. Int J Cell Biol. 2009;2009:904682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. van Steenberghe M, Schubert T, Guiot Y, Goebbels RM, Gianello P. Improvement of mesh recolonization in abdominal wall reconstruction with adipose vs. bone marrow mesenchymal stem cells in a rodent model. J Pediatr Surg. 2017;52(8):1355–62.

    Article  PubMed  Google Scholar 

  58. Li CY, Wu XY, Tong JB, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther. 2015;6:55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the Integrated Research Center for Fetal Medicine (I.B.) and Sheikh Abdullah Bugshan Fund (I.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Burd.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Ethical Approval

Animal study protocols were approved by the Institutional Animal Care and Use Committee at the Johns Hopkins University (No. MO14M326).

Statement of Informed Consent

Animals were maintained and used in accordance with National Institute of Health guidelines.

Electronic supplementary material

ESM 1

(DOCX 748 kb)

ESM 2

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Xie, L., Clemens, J.L. et al. Mouse Bone Marrow-Derived Mesenchymal Stem Cells Alleviate Perinatal Brain Injury Via a CD8+ T Cell Mechanism in a Model of Intrauterine Inflammation. Reprod. Sci. 27, 1465–1476 (2020). https://doi.org/10.1007/s43032-020-00157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00157-y

Keywords

Navigation