Skip to main content
Log in

Si Surface Passivation by Atomic Layer Deposited Al2O3 with In-Situ H2O Prepulse Treatment

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

We explored the electrical properties of Au/Al2O3/p-Si diodes subjected to in situ atomic layer deposition (ALD) preceded by H2O pulsing, and derived capacitance–voltage (CV) curves. Prepulsed samples exhibited lower frequency dispersion in the accumulation region, and negligible frequency dispersion in the inversion region, compared to control samples. The test samples also showed less marked flatband voltage shifts in terms of CV hysteresis (about 60% reduction at 1 MHz). Analysis of frequency-dependent parallel conductance revealed that H2O prepulsing reduced the interface trap density. The exponential dependence of the time constant of applied voltage deviated from linearity for samples not subjected to H2O prepulsing, attributable to non-uniformity of the oxide charges. Border traps evident in the accumulation region at ~ 0.32 eV above the Si valence band with the time constant about 1 μs were passivated by H2O prepulsing. These results suggest that H2O prepulsing is a promising surface treatment for Si prior to ALD deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Wilk, R. Wallace, J. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  Google Scholar 

  2. G. Dingemans, W. Kessels, J. Vac. Sci. Technol., A 30, 040802 (2012)

    Article  Google Scholar 

  3. B. Hoex, J. Schmidt, P. Pohl, M. van de Sanden, W. Kessels, J. Appl. Phys. 104, 044903 (2008)

    Article  Google Scholar 

  4. G. Dingemans, N. Terlinden, M. Verheijen, M. van de Sanden, W. Kessels, J. Appl. Phys. 110, 093715 (2011)

    Article  Google Scholar 

  5. F. Werner, B. Veith, D. Zielke, L. Kühnemund, C. Tegenkamp, M. Seibt, R. Brendel, J. Schmidt, J. Appl. Phys. 109, 113701 (2011)

    Article  Google Scholar 

  6. L. Green, M. Ho, B. Busch, G. Wilk, T. Sorsch, T. Conard, B. Brijs, W. Vandervorst, P. Raisanen, D. Muller, M. Bude, J. Grazul, J. Appl. Phys. 92, 7168 (2002)

    Article  Google Scholar 

  7. S. Kim, C. Hwang, J. Appl. Phys. 96, 2323 (2004)

    Article  Google Scholar 

  8. S. Lee, J. Baik, K. An, Y. Suh, J. Oh, Y. Kim, J. Phys. Chem. B 108, 15128 (2004)

    Article  Google Scholar 

  9. C. Lin, Y. Chen, C. Lee, H. Chang, W. Chang, C. Liu, ECS Trans. 33, 80 (2010)

    Google Scholar 

  10. S. Swaminathan, Y. Oshima, M. Kelly, P. McIntyre, Appl. Phys. Lett. 95, 032907 (2009)

    Article  Google Scholar 

  11. L. Zhang, Y. Guo, V. Hassan, K. Tang, M. Foad, J. Woicik, P. Pianetta, J. Robertson, P. McIntyre, ACS Appl. Mater. Interfaces. 8, 19110 (2016)

    Article  Google Scholar 

  12. Y. Xuan, H. Lin, P. Ye, G. Wilk, Appl. Phys. Lett. 88, 263518 (2006)

    Article  Google Scholar 

  13. H. Harris, N. Biswas, H. Temkin, S. Gangopadhyay, M. Strathman, J. Appl. Phys. 90, 5825 (2001)

    Article  Google Scholar 

  14. P. Bolshakov, P. Zhao, A. Azcatl, P. Hurley, R. Wallace, C. Young, Appl. Phys. Lett. 111, 032110 (2017)

    Article  Google Scholar 

  15. Y. Xuan, H. Lin, P. Ye, I.E.E.E. Trans, Electron Dev. 54, 1811 (2007)

    Article  Google Scholar 

  16. C. Yen, M. Lee, Jpn. J. Appl. Phys. 53, 121201 (2014)

    Article  Google Scholar 

  17. H. Altuntas, C. Ozgit-Akgun, I. Donmez, N. Biyikli, J. Appl. Phys. 117, 155101 (2015)

    Article  Google Scholar 

  18. D. Wei, T. Hossain, D. Briggs, J. Edgar, ECS J. Solid State Technol. 3, N127 (2014)

    Article  Google Scholar 

  19. S. Gupta, E. Simoen, R. Loo, O. Madia, D. Lin, C. Merckling, Y. Shimura, T. Conard, J. Lauwaert, H. Vrielinck, M. Heyns, ACS Appl. Mater. Interfaces. 8, 13181 (2016)

    Article  Google Scholar 

  20. N. Saks, M. Ancona, IEEE Electron Dev. Lett. 11, 339 (1990)

    Article  Google Scholar 

  21. C. Hu, Modern Semiconductor Devices for Integrated Circuits (Pearson, New Jersey, 2009)

    Google Scholar 

  22. B. Ren, M. Sumiya, M. Liao, Y. Koide, X. Liu, Y. Shen, L. Sang, J. Alloys Compd. 767, 600 (2018)

    Article  Google Scholar 

  23. P. Kordoš, R. Stoklas, D. Gregušová, J. Novák, Appl. Phys. Lett. 94, 223512 (2009)

    Article  Google Scholar 

  24. P. Fiorenza, G. Greco, F. Iucolano, A. Patti, F. Roccaforte, Appl. Phys. Lett. 106, 142903 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a Research Program of the Seoul National University of Science and Technology (Seoultech).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hogyoung Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Choi, B.J. Si Surface Passivation by Atomic Layer Deposited Al2O3 with In-Situ H2O Prepulse Treatment. Trans. Electr. Electron. Mater. 20, 359–363 (2019). https://doi.org/10.1007/s42341-019-00126-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00126-6

Keywords

Navigation