Skip to main content
Log in

Effectors, chaperones, and harpins of the Type III secretion system in the fire blight pathogen Erwinia amylovora: a review

  • Review
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Erwinia amylovora is a plant pathogenic bacterium that causes the disease fire blight in a wide range of Rosaceous plants including apples and pears. This pathogen utilizes the hypersensitive response and pathogenicity (hrp)-type III secretion system (T3SS), an essential pathogenicity factor of E. amylovora, to deliver proteins from bacteria to plant apoplasts or the cytoplasm to regulate host immune responses and physiology. Proteins secreted by the E. amylovora T3SS include five effectors: DspA/E, Eop1, Eop3, Eop4 (AvrRpt2Ea), and HopPtoCEa, two harpins: HrpN and HrpW, and other proteins such as Eop2, HrpJ, and HrpK. Homologs of these T3SS-secreted proteins have been characterized in plant pathogens like Pseudomonas syringae, Xanthomonas spp., Ralstonia spp., plant symbionts like Rhizobium spp. and animal pathogens such as Yersinia spp., implicating a central role of these effector proteins in manipulating bacterial interactions with diverse host species. Translocation of effectors is crucial for T3SS-mediated disease development in hosts. It is thought to be mediated by cognate chaperones, but the translocation of E. amylovora DspA/E was recently shown to be regulated by several different chaperones as well as a previously reported harpin, HrpN, in addition to its cognate chaperone DspB/F. This suggests that the dynamics of effector translocation are more complicated than previously expected in E. amylovora. In this review, we summarize the current knowledge of E. amylovora T3SS effectors, chaperones, and harpins together with their homologs from other plant-associated bacterial species. We also discuss the roles of T3SS-secreted proteins in pathogenicity and fitness via exploring their localization, activity, and direct or indirect targets in host plants. Finally, we provide future perspectives on studying effector biology and the T3SS in E. amylovora and how this fundamental knowledge provides potential applications in preventing fire blight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeolu M, Alnajar S, Naushad S, Gupta R (2016) Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 66:5575–5599

    Article  CAS  PubMed  Google Scholar 

  • Aldwinckle HS, Preczewski J (1979) Reaction of terminal shoots of apple cultivars to invasion by Erwinia amylovora. Phytopathology 66:1439–1444

    Article  Google Scholar 

  • Alfano JR, Collmer A (1997) The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol 179:5655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414

    Article  CAS  PubMed  Google Scholar 

  • Arnold DL, Jackson RW, Fillingham AJ, Goss SC, Taylor JD, Mansfield JW, Vivian A (2001) Highly conserved sequences flank avirulence genes: isolation of novel avirulence genes from Pseudomonas syringae pv. pisi. Microbiology 147:1171–1182

  • Asselin J, Oh C, Nissinen R, Beer S, Nissinen R (2006) The secretion of EopB from Erwinia amylovora. In: Acta horticulturae. International Society for Horticultural Science, pp 409–416

  • Asselin J, Bonasera J, Kim JF, Oh C-S, Beer S (2011) Eop1 from a Rubus strain of Erwinia amylovora functions as a host-range limiting factor. Phytopathology 101:935–944

    Article  CAS  PubMed  Google Scholar 

  • Aung K, Jiang Y, He SY (2018) The role of water in plant–microbe interactions. Plant J 93:771–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:369–377

    Article  CAS  PubMed  Google Scholar 

  • Baltrus DA, Nishimura MT, Dougherty KM, Biswas S, Mukhtar MS, Vicente J, Holub EB, Dangl JL (2012) The molecular basis of host specialization in bean pathovars of Pseudomonas syringae. Mol Plant Microbe Interact 25:877–888

  • Barny M-A (1995) Erwinia amylovora hrpN mutants, blocked in harpin synthesis, express a reduced virulence on host plants and elicit variable hypersensitive reactions on tobacco. Eur J Plant Pathol 101:333–340

    Article  Google Scholar 

  • Bartho JD, Demitri N, Bellini D, Flachowsky H, Peil A, Walsh MA, Benini S (2019) The structure of Erwinia amylovora AvrRpt2 provides insight into protein maturation and induced resistance to fire blight by Malus × robusta 5. J Struct Biol 206:233–242

    Article  CAS  PubMed  Google Scholar 

  • Bastedo DP, Lo T, Laflamme B, Desveaux D, Guttman DS (2019) Diversity and Evolution of type III Secreted Effectors: A case study of three families. Curr Topics Microbiol Immunol

  • Bocsanczy AM, Nissinen RM, OH, C. S., and Beer SV (2008) HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells. Mol Plant Pathol 9:425–434

  • Bocsanczy A, Schneider D, DeClerck G, Cartinhour S, Beer S (2012) HopX1 in Erwinia amylovora functions as an avirulence protein in apple and is regulated by HrpL. J Bacteriol 194:553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanove AJ, Wei Z-M, Zhao L, Beer SV (1996) Erwinia amylovora secretes harpin via a type III pathway and contains a homolog of yopN of Yersinia spp. J Bacteriol 178:1720–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanove AJ, Bauer DW, Beer SV (1998a) Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the Hrp (type III secretion) pathway. J Bacteriol 180:2244–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanove AJ, Kim JF, Wei Z, Kolchinsky P, Charkowski AO, Conlin AK, Collmer A, Beer SV (1998b) Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proc Natl Acad Sci 95:1325–1330

  • Bonasera J, Meng X, Beer S, Owens T, Kim W (2004) Interaction of DspE/A, a pathogenicity/avirulence protein of Erwinia amylovora, with pre-ferredoxin from apple and its relationship to photosynthetic efficiency. Acta Horticiculturae 704:473–478

    Google Scholar 

  • Borejsza-Wysocka E, Malnoy M, Meng X, Bonasera J, Nissinen R, Kim J, Beer S, Aldwinckle H (2004) Silencing of apple proteins that interact with DspE, a pathogenicity effector from Erwinia amylovora, as a strategy to increase resistance to fire blight. In: XI Eucarpia Symposium on Fruit Breeding and Genetics International Society for Horticultural Science, pp 469–474

  • Boureau T, ElMaarouf-Bouteau H, Garnier A, Brisset M-N, Perino C, Pucheu I, Barny M-A (2006) DspA/E, a type III effector essential for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants. Mol Plant Microbe Interact 19:16–24

    Article  CAS  PubMed  Google Scholar 

  • Büttner D, He SY (2009) Type III protein secretion in plant pathogenic bacteria. Plant Physiol 150:1656–1664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calenge F, Drouet D, Denancé C, Van de Weg W, Brisset M-N, Paulin J-P, Durel C-E (2005) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135

    Article  CAS  PubMed  Google Scholar 

  • Campa M, Piazza S, Righetti L, Oh C-S, Conterno L, Borejsza-Wysocka E, Nagamangala KC, Beer SV, Aldwinckle HS, Malnoy M (2019) HIPM is a susceptibility gene of Malus spp.: reduced expression reduces susceptibility to Erwinia amylovora. Mol Plant Microbe Interact 32:167–175

  • Castiblanco LF, Sundin GW (2016) New insights on molecular regulation of biofilm formation in plant-associated bacteria. J Integr Plant Biol 58:362–372

  • Castiblanco LF, Triplett LR, Sundin GW (2018) Regulation of effector delivery by type III secretion chaperone proteins in erwinia amylovora. Front Microbiol 9:146

  • Charova SN, Gazi AD, Mylonas E, Pozidis C, Sabarit B, Anagnostou D, Psatha K, Aivaliotis M, Beuzon CR, Panopoulos NJ (2018) Migration of type III secretion system transcriptional regulators links gene expression to secretion. mBio 9:e01096–e01018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E (2019) Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Front Plant Sci 10:40

  • Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci 104:20131–20136

  • Chisholm ST, Dahlbeck D, Krishnamurthy N, Day B, Sjolander K, Staskawicz BJ (2005) Molecular characterization of proteolytic cleavage sites of the Pseudomonas syringae effector AvrRpt2. Proc Natl Acad Sci 102:2087–2092

  • Choi M-S, Kim W, Lee C, Oh C-S (2013) Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. Mol Plant Microbe Interact 26:1115–1122

  • Coaker G, Zhu G, Ding Z, Van Doren SR, Staskawicz B (2006) Eukaryotic cyclophilin as a molecular switch for effector activation. Mol Microbiol 61:1485–1496

    Article  CAS  PubMed  Google Scholar 

  • Coburn B, Sekirov I, Finlay BB (2007) Type III secretion systems and disease. Clin Microbiol Rev 20:535–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collmer A, Schneider DJ, Lindeberg M (2009) Lifestyles of the effector rich: genome-enabled characterization of bacterial plant pathogens. Plant Physiol 150:1623–1630

  • Crabill E, Karpisek A, Alfano JR (2012) The Pseudomonas syringae HrpJ protein controls the secretion of type III translocator proteins and has a virulence role inside plant cells. Mol Microbiol 85:225–238

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Wu S, Sun W, Coaker G, Kunkel B, He P, Shan L (2013) The Pseudomonas syringae type III effector AvrRpt2 promotes pathogen virulence via stimulating Arabidopsis auxin/indole acetic acid protein turnover. Plant Physiol 162:1018–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunnac S, Occhialini A, Barberis P, Boucher C, Genin S (2004) Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system. Mol Microbiol 53:115–128

    Article  CAS  PubMed  Google Scholar 

  • Daccord N, Celton J-M, Linsmith G, Becker C, Choisne N, Schijlen E, Van de Geest H, Bianco L, Micheletti D, Velasco R (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099

    Article  CAS  PubMed  Google Scholar 

  • Dai W-J, Zeng Y, Xie Z-P, Staehelin C (2008) Symbiosis-promoting and deleterious effects of NopT, a novel type 3 effector of Rhizobium sp. strain NGR234. J Bacteriol 190:5101–5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deb D, Anderson RG, How-Yew-Kin T, Tyler BM, McDowell JM (2018) Conserved RxLR effectors from oomycetes Hyaloperonospora arabidopsidis and Phytophthora sojae suppress PAMP-and effector-triggered immunity in diverse plants. Mol Plant Microbe Interact 31:374–385

    Article  CAS  PubMed  Google Scholar 

  • DebRoy S, Thilmony R, Kwack Y-B, Nomura K, He SY (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci 101:9927–9932

  • Degrave A, Siamer S, Boureau T, Barny MA (2015) The AvrE superfamily: ancestral type III effectors involved in suppression of pathogen-associated molecular pattern‐triggered immunity. Mol Plant Pathol 16:899–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denning W (1794) On the decay of apple trees. New York Society for the Promotion of Agricultural Arts Manufacturers Transaction 2:219–222

  • Desnoues E, Norelli JL, Aldwinckle HS, Wisniewski ME, Evans KM, Malnoy M, Khan A (2018) Identification of novel strain-specific and environment-dependent minor QTLs linked to fire blight resistance in apples. Plant Mol Biol Reportr 36:247–256

  • Dowen RH, Engel JL, Shao F, Ecker JR, Dixon JE (2009) A family of bacterial cysteine protease type III effectors utilizes acylation-dependent and-independent strategies to localize to plasma membranes. J Biol Chem 284:15867–15879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmunds AC, Castiblanco LF, Sundin GW, Waters CM (2013) Cyclic Di-GMP modulates the disease progression of Erwinia amylovora. J Bacteriol 195:2155–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Kasmi F, Horvath D, Lahaye T (2018) Microbial effectors and the role of water and sugar in the infection battle ground. Curr Opin Plant Biol 44:98–107

    Article  PubMed  CAS  Google Scholar 

  • Emeriewen OF, Peil A, Richter K, Zini E, Hanke M-V, Malnoy M (2017) Fire blight resistance of Malus × arnoldiana is controlled by a quantitative trait locus located at the distal end of linkage group 12. Eur J Plant Pathol 148:1011–1018

    Article  CAS  Google Scholar 

  • Emeriewen OF, Richter K, Piazza S, Micheletti D, Broggini GA, Berner T, Keilwagen J, Hanke M-V, Malnoy M, Peil A (2018) Towards map-based cloning of FB_Mfu10: identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10. Mol Breeding 38:106

    Article  CAS  Google Scholar 

  • Emeriewen OF, Wöhner TW, Flachowsky H, Peil A (2019) Malus hosts–Erwinia amylovora interactions: strain pathogenicity and resistance mechanisms. Front Plant Sci 10:551

  • Eschen-Lippold L, Jiang X, Elmore JM, Mackey D, Shan L, Coaker G, Scheel D, Lee J (2016) Bacterial AvrRpt2-like cysteine proteases block activation of the Arabidopsis mitogen-activated protein kinases, MPK4 and MPK11. Plant Physiol 171:2223–2238

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu ZQ, Guo M, Alfano JR (2006) Pseudomonas syringae HrpJ is a type III secreted protein that is required for plant pathogenesis, injection of effectors, and secretion of the HrpZ1 harpin. J Bacteriol 188:6060–6069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner SE, Norelli JL, de Silva N, Fazio G, Peil A, Malnoy M, Horner M, Bowatte D, Carlisle C, Wiedow C (2012) Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’accessions. BMC Genet 13:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaudriault S, Malandrin L, Paulin JP, Barny MA (1997) DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol Microbiol 26:1057–1069

    Article  CAS  PubMed  Google Scholar 

  • Gaudriault S, Paulin JP, Barny MA (2002) The DspB/F protein of Erwinia amylovora is a type III secretion chaperone ensuring efficient intrabacterial production of the Hrp-secreted DspA/E pathogenicity factor. Mol Plant Pathol 3:313–320

    Article  CAS  PubMed  Google Scholar 

  • Gimenez-Ibanez S, Boter M, Fernández-Barbero G, Chini A, Rathjen JP, Solano R (2014) The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis. PLoS Biol 12:e1001792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goslin K, Eschen-Lippold L, Naumann C, Linster E, Sorel M, Klecker M, de Marchi R, Kind A, Wirtz M, Lee J (2019) Differential N-end rule degradation of RIN4/NOI fragments generated by the AvrRpt2 effector protease. Plant Physiol 180:2272–2289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith CS, Sutton TB, Peterson PD (2003) Fire blight: the foundation of phytobacteriology. Am Phytopathol Soc

  • Ham JH, Majerczak D, Ewert S, SREEREKHA MV, Mackey D, Coplin D (2008) WtsE, an AvrE-family type III effector protein of Pantoea stewartii subsp. stewartii, causes cell death in non‐host plants. Mol Plant Pathol 9:633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ham JH, Majerczak DR, Nomura K, Mecey C, Uribe F, He S-Y, Mackey D, Coplin DL (2009) Multiple activities of the plant pathogen type III effector proteins WtsE and AvrE require WxxxE motifs. Mol Plant Microbe Interact 22:703–712

  • Hogan CS, Mole BM, Grant SR, Willis DK, Charkowski AO (2013) The type III secreted effector DspE is required early in Solanum tuberosum leaf infection by Pectobacterium carotovorum to cause cell death, and requires Wx (3–6) D/E motifs. PLoS One 8:e65534

  • Holtappels M, Vrancken K, Schoofs H, Deckers T, Remans T, Noben J-P, Valcke R (2015) A comparative proteome analysis reveals flagellin, chemotaxis regulated proteins and amylovoran to be involved in virulence differences between Erwinia amylovora strains. J Proteome 123:54–69

    Article  CAS  Google Scholar 

  • Hotson A, Mudgett MB (2004) Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity. Curr Opin Plant Biol 7:384–390

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman J, Choi S, Prokchorchik M, Choi DS, Spiandore A, Rikkerink EH, Templeton MD, Segonzac C, Sohn KH (2017) A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Sci Rep 7:1–15

  • Jiang S, Yao J, Ma K-W, Zhou H, Song J, He SY, Ma W (2013) Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors. PLoS pathogens 9:e1003715–e1003715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin P, Wood MD, Wu Y, Xie Z, Katagiri F (2003) Cleavage of the Pseudomonas syringae type III effector AvrRpt2 requires a host factor (s) common among eukaryotes and is important for AvrRpt2 localization in the host cell. Plant Physiol 133:1072–1082

  • Jin L, Ham JH, Hage R, Zhao W, Soto-Hernandez J, Lee SY, Paek S-M, Kim MG, Boone C, Coplin DL (2016) Direct and indirect targeting of PP2A by conserved bacterial type-III effector proteins. PLoS Pathog 12:e1005609–e1005609

  • Karasov TL, Almario J, Friedemann C, Ding W, Giolai M, Heavens D, Kersten S, Lundberg DS, Neumann M, Regalado J (2018) Arabidopsis thaliana and Pseudomonas pathogens exhibit stable associations over evolutionary timescales. Cell Host Microbe 24:168–179. e164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breeding 17:299–306

    Article  Google Scholar 

  • Khan MA, Zhao YF, Korban SS (2012) Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Mol Biol Report 30:247–260

  • Kim JF, Beer SV (1998) HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J Bacteriol 180:5203–5210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi DY, Tamaki SJ, Keen NT (1989) Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc Natl Acad Sci 86:157–161

  • Kvitko BH, Ramos AR, Morello JE, Oh H-S, Collmer A (2007) Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J Bacteriol 189:8059–8072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laflamme B, Dillon MM, Martel A, Almeida RN, Desveaux D, Guttman DS (2020) The pan-genome effector-triggered immunity landscape of a host-pathogen interaction. Science 367:763–768

    Article  CAS  PubMed  Google Scholar 

  • Lee AH-Y, Hurley B, Felsensteiner C, Yea C, Ckurshumova W, Bartetzko V, Wang PW, Quach V, Lewis JD, Liu YC (2012) A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PLoS Pathog 8:e1002523–e1002523

  • Lee J, Manning AJ, Wolfgeher D, Jelenska J, Cavanaugh KA, Xu H, Fernandez SM, Michelmore RW, Kron SJ, Greenberg JT (2015) Acetylation of an NB-LRR plant immune-effector complex suppresses immunity. Cell Rep 13:1670–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JD, Wu R, Guttman DS, Desveaux D (2010) Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein. PLoS Genet 6:e1000894–e1000894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis JD, Lee A, Ma W, Zhou H, Guttman DS, Desveaux D (2011) The YopJ superfamily in plant-associated bacteria. Mol Plant Pathol 12:928–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JD, Wilton M, Mott GA, Lu W, Hassan JA, Guttman DS, Desveaux D (2014) Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis. PLoS One 9:e116152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Kui L, Zhang J, Xie Y, Wang L, Yan Y, Wang N, Xu J, Li C, Wang W (2016) Improved hybrid de novo genome assembly of domesticated apple (Malus x domestica). Gigascience 5:s13742-13016-10139-13740

  • Lorang J, Keen N (1995) Characterization of avrE from Pseudomonas syringae pv. tomato: a hrp-linked avirulence locus consisting of at least two transcriptional units. Mol Plant Microbe Interact 8:49–57

  • Ma W, Dong F, Stavrinides J, Guttman D (2006) Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet 2:e209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma KW, Jiang S, Hawara E, Lee D, Pan S, Coaker G, Song J, Ma W (2015) Two serine residues in Pseudomonas syringae effector HopZ1a are required for acetyltransferase activity and association with the host co-factor. New Phytol 208:1157–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112:379–389

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Martens S, Norelli JL, Barny M-A, Sundin GW, Smits TH, Duffy B (2012) Fire blight: applied genomic insights of the pathogen and host. Annu Rev Phytopathol 50:475–494

    Article  CAS  PubMed  Google Scholar 

  • Mann RA, Smits TH, Bühlmann A, Blom J, Goesmann A, Frey JE, Plummer KM, Beer SV, Luck J, Duffy B (2013) Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core. PLoS One 8:e55644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield J, Jenner C, Hockenhull R, Bennett MA, Stewart R (1994) Characterization of avrPphE, a gene for cultivar-specific avirulence from Pseudomonas syringae pv. phaseolicola which is physically linked to hrpY, a new hrp gene identified in the halo-blight bacterium. Mol Plant Microbe Interact 7:726–739

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazo-Molina C, Mainiero S, Hind SR, Kraus CM, Vachev M, Maviane-Macia F, Lindeberg M, Saha S, Strickler SR, Feder A (2019) The Ptr1 Locus of Solanum lycopersicoides Confers Resistance to Race 1 Strains of Pseudomonas syringae pv. tomato and to Ralstonia pseudosolanacearum by Recognizing the Type III Effectors AvrRpt2 and RipBN. Mol Plant Microbe Interact 32:949–960

    Article  CAS  PubMed  Google Scholar 

  • Mazo-Molina C, Mainiero S, Haefner BJ, Bednarek R, Zhang J, Feder A, Shi K, Strickler SR, Martin GB (2020) Ptr1 evolved convergently with RPS2 and Mr5 to mediate recognition of AvrRpt2 in diverse solanaceous species. Plant J

  • McNally RR, Zhao Y, Sundin GW (2015) Towards understanding fire blight: virulence mechanisms and their regulation in Erwinia amylovora. In: Murillo J, Vinatzer BA, Jackson RW, Arnold DL (eds) Bacteria-Plant Interactions: Advanced Research and Future Trends. Caister Academic Press, Norfolk, pp 61–82

    Chapter  Google Scholar 

  • Meng X, Bonasera JM, Kim JF, Nissinen RM, Beer SV (2006) Apple proteins that interact with DspA/E, a pathogenicity effector of Erwinia amylovora, the fire blight pathogen. Mol Plant Microbe Interact 19:53–61

  • Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, Goldsmith EJ, Orth K (2006) Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312:1211–1214

    Article  CAS  PubMed  Google Scholar 

  • Myung I-S, Lee J-Y, Yun M-J, Lee Y-H, Lee Y-K, Park D-H, Oh C-S (2016) Fire blight of apple, caused by Erwinia amylovora, a new disease in Korea. Plant Dis 100:1774–1774

    Article  Google Scholar 

  • Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  • Nimchuk ZL, Fisher EJ, Desveaux D, Chang JH, Dangl JL (2007) The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function. Mol Plant Microbe Interact 20:346–357

  • Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6:31481

  • Nissan G, Gershovits M, Morozov M, Chalupowicz L, Sessa G, Manulis-Sasson S, Barash I, Pupko T (2018) Revealing the inventory of type III effectors in Pantoea agglomerans gall‐forming pathovars using draft genome sequences and a machine‐learning approach. Mol Plant Pathol 19:381–392

    Article  CAS  PubMed  Google Scholar 

  • Nissinen RM, Ytterberg AJ, Bogdanove AJ, Van Wijk KJ, Beer SV (2007) Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol Plant Pathol 8:55–67

    Article  CAS  PubMed  Google Scholar 

  • Norelli J, Aldwinckle H, Beer S (1984) Differential host x pathogen interactions among cultivars of apple and strains of Erwinia amylovora. Phytopathology 74:136–139

    Article  Google Scholar 

  • Oh C-S, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 253:185–192

    Article  CAS  PubMed  Google Scholar 

  • Oh CS, Kim JF, Beer SV (2005) The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infection. Mol Plant Pathol 6:125–138

  • Oh CS, Martin GB, Beer SV (2007) DspA/E, a type III effector of Erwinia amylovora, is required for early rapid growth in Nicotiana benthamiana and causes NbSGT1-dependent cell death. Mol Plant Pathol 8:255–265

    Article  CAS  PubMed  Google Scholar 

  • Oh C-S, Carpenter SC, Hayes ML, Beer SV (2010) Secretion and translocation signals and DspB/F-binding domains in the type III effector DspA/E of Erwinia amylovora. Microbiology 156:1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Liang Z, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Poli M (2018) CRISPR–Cas9-mediated genome editing in apple and grapevine. Nat Protoc 13:2844–2863

    Article  CAS  PubMed  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Peil A, Garcia-Libreros T, Richter K, Trognitz F, Trognitz B, Hanke MV, Flachowsky H (2007) Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant Breeding 126:470–475

    Article  CAS  Google Scholar 

  • Petnicki-Ocwieja T, Schneider DJ, Tam VC, Chancey ST, Shan L, Jamir Y, Schechter LM, Janes MD, Buell CR, Tang X (2002) Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci 99:7652–7657

  • Petnicki-Ocwieja T, van Dijk K, Alfano JR (2005) The hrpK Operon of Pseudomonas syringae pv. tomato DC3000 Encodes Two Proteins Secreted by the Type III (Hrp) Protein Secretion System: HopB1 and HrpK, a Putative Type III Translocator. J Bacteriol 187:649–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pompili V, Dalla Costa L, Piazza S, Pindo M, Malnoy M (2020) Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9‐FLP/FRT‐based gene editing system. Plant Biotechnol J 18:845–858

    Article  CAS  PubMed  Google Scholar 

  • Prokchorchik M, Choi S, Chung EH, Won K, Dangl JL, Sohn KH (2020) A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors. New Phytol 225:1327–1342

    Article  CAS  PubMed  Google Scholar 

  • Puławska J, Kałużna M, Warabieda W, Mikiciński A (2017) Comparative transcriptome analysis of a lowly virulent strain of Erwinia amylovora in shoots of two apple cultivars–susceptible and resistant to fire blight. BMC Genomics 18:868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puri N, Jenner C, Bennett M, Stewart R, Mansfield J, Lyons N, Taylor J (1997) Expression of avrPphB, an avirulence gene from Pseudomonas syringae pv. phaseolicola, and the delivery of signals causing the hypersensitive reaction in bean. Mol Plant Microbe Interact 10:247–256

  • Pusey P (2000) The role of water in epiphytic colonization and infection of pomaceous flowers by Erwinia amylovora. Phytopathology 90:1352–1357

    Article  CAS  PubMed  Google Scholar 

  • Ray SK, Macoy DM, Kim W-Y, Lee SY, Kim MG (2019) Role of RIN4 in regulating PAMP-triggered immunity and effector-triggered immunity: current status and future perspectives. Mol Cells 42:503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rezzonico F, BRAUN-KIEWNICK A, Mann RA, Rodoni B, Goesmann A, Duffy B, Smits TH (2012) Lipopolysaccharide biosynthesis genes discriminate between Rubus‐and Spiraeoideae‐infective genotypes of Erwinia amylovora. Mol Plant Pathol 13:975–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhouma A, Helali F, Chettaoui M, Hajjouji M, Hajlaoui M (2014) First report of fire blight caused by Erwinia amylovora on pear in Tunisia. Plant Dis 98:158–158

    Article  CAS  PubMed  Google Scholar 

  • Russell AR, Ashfield T, Innes RW (2015) Pseudomonas syringae effector AvrPphB suppresses AvrB-induced activation of RPM1 but not AvrRpm1-induced activation. Mol Plant Microbe Interact 28:727–735

    Article  CAS  PubMed  Google Scholar 

  • Sang Y, Yu W, Zhuang H, Wei Y, Derevnina L, Yu G, Luo J, Macho AP (2020) Intra-strain elicitation and suppression of plant immunity by Ralstonia solanacearum type-III effectors in Nicotiana benthamiana. Plant Commun:100025

  • Schechter LM, Roberts KA, Jamir Y, Alfano JR, Collmer A (2004) Pseudomonas syringae type III secretion system targeting signals and novel effectors studied with a Cya translocation reporter. J Bacteriol 186:543–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröpfer S, Böttcher C, Wöhner T, Richter K, Norelli J, Rikkerink EH, Hanke M-V, Flachowsky H (2018) A Single Effector Protein, AvrRpt2EA, from Erwinia amylovora Can Cause Fire Blight Disease Symptoms and Induces a Salicylic Acid–Dependent Defense Response. Mol Plant Microbe Interact 31:1179–1191

    Article  PubMed  Google Scholar 

  • Singh J, Khan A (2019) Distinct patterns of natural selection determine sub-population structure in the fire blight pathogen, Erwinia amylovora. Sci Rep 9:14017–14017

  • Slack SM, Zeng Q, Outwater CA, Sundin GW (2017) Microbiological examination of Erwinia amylovora exopolysaccharide ooze. Phytopathology 107:403–411

    Article  CAS  PubMed  Google Scholar 

  • Smits T, Duffy B, Sundin G, Zhao Y, Rezzonico F (2017) Erwinia amylovora in the genomics era: from genomes to pathogen virulence, regulation, and disease control strategies. J Plant Pathol 99:7–23

  • Soukainen M, Santala J, Tegel J (2015) First report of Erwinia amylovora, the causal agent of fire blight, on pear in Finland. Plant Dis 99:1033

    Article  Google Scholar 

  • Staskawicz BJ, Mudgett MB, Dangl JL, Galan JE (2001) Common and contrasting themes of plant and animal diseases. Science 292:2285–2289

    Article  CAS  PubMed  Google Scholar 

  • Stevens C, Bennett MA, Athanassopoulos E, Tsiamis G, Taylor JD, Mansfield JW (1998) Sequence variations in alleles of the avirulence gene avrPphE. R2 from Pseudomonas syringae pv. phaseolicola lead to loss of recognition of the AvrPphE protein within bean cells and a gain in cultivar-specific virulence. Mol Microbiol 29:165–177

    Article  CAS  PubMed  Google Scholar 

  • Stukenbrock EH, McDonald BA (2008) The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol 46:75–100

    Article  CAS  PubMed  Google Scholar 

  • Tasset C, Bernoux M, Jauneau A, Pouzet C, Brière C, Kieffer-Jacquinod S, Rivas S, Marco Y, Deslandes L (2010) Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog 6:e1001202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007) New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol Plant Microbe Interact 20:1250–1261

  • Thomson S (1986) The role of the stigma in fire blight infections. Phytopathology 76:476–482

    Article  Google Scholar 

  • Thomson SV (2000) Epidemiology of fire blight. Fire Blight: The Disease and its Causative Agent. In: Erwinia amylovora. CAVI Publishing, Wallingfort, pp 9–37

    Google Scholar 

  • Toruño TY, Shen M, Coaker G, Mackey D (2019) Regulated disorder: Posttranslational modifications control the RIN4 plant immune signaling hub. Mol Plant Microbe Interact 32:56–64

  • Triplett LR, Melotto M, Sundin GW (2009) Functional analysis of the N terminus of the Erwinia amylovora secreted effector DspA/E reveals features required for secretion, translocation, and binding to the chaperone DspB/F. Mol Plant Microbe Interact 22:1282–1292

  • Triplett LR, Wedemeyer WJ, Sundin GW (2010) Homology-based modeling of the Erwinia amylovora type III secretion chaperone DspF used to identify amino acids required for virulence and interaction with the effector DspE. Res Microbiol 161:613–618

    Article  CAS  PubMed  Google Scholar 

  • Troisfontaines P, Cornelis GR (2005) Type III secretion: more systems than you think. Physiology 20:326–339

    Article  CAS  PubMed  Google Scholar 

  • Üstün S, König P, Guttman DS, Börnke F (2014) HopZ4 from Pseudomonas syringae, a member of the HopZ type III effector family from the YopJ superfamily, inhibits the proteasome in plants. Mol Plant Microbe Interact 27:611–623

    Article  PubMed  CAS  Google Scholar 

  • Van de Weg E, Di Guardo M, Jänsch M, Socquet-Juglard D, Costa F, Baumgartner I, Broggini GA, Kellerhals M, Troggio M, Laurens F (2018) Epistatic fire blight resistance QTL alleles in the apple cultivar ‘Enterprise’and selection X-6398 discovered and characterized through pedigree-informed analysis. Mol Breeding 38:5

    Article  CAS  Google Scholar 

  • Van der Zwet T, Orolaza-Halbrendt N, Zeller W (2012) Fire blight: history, biology, and management. Am Phytopath Society

  • van Schie CC, Takken FL (2014) Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52:551–581

    Article  PubMed  CAS  Google Scholar 

  • Vanderplank JE (2012) Disease resistance in plants. Elsevier, Amsterdam

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Vinatzer BA, Teitzel GM, Lee MW, Jelenska J, Hotton S, Fairfax K, Jenrette J, Greenberg JT (2006) The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Mol Microbiol 62:26–44

    Article  CAS  PubMed  Google Scholar 

  • Vogt I, Wöhner T, Richter K, Flachowsky H, Sundin GW, Wensing A, Savory EA, Geider K, Day B, Hanke MV (2013) Gene-for-gene relationship in the host-pathogen system Malus × robusta 5-Erwinia amylovora. New Phytol 197:1262–1275

    Article  CAS  PubMed  Google Scholar 

  • Wei HL, Collmer A (2012) Multiple lessons from the multiple functions of a regulator of type III secretion system assembly in the plant pathogen Pseudomonas syringae. Mol Microbiol 85:195–200

    Article  CAS  PubMed  Google Scholar 

  • Wei HL, Collmer A (2018) Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors. Mol Plant Pathol 19:1779–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Z-M, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88

    Article  CAS  PubMed  Google Scholar 

  • Wei CF, Deng WL, Huang HC (2005) A chaperone-like HrpG protein acts as a suppressor of HrpV in regulation of the Pseudomonas syringae pv. syringae type III secretion system. Mol Microbiol 57:520–536

    Article  CAS  PubMed  Google Scholar 

  • Wei CF, Kvitko BH, Shimizu R, Crabill E, Alfano JR, Lin NC, Martin GB, Huang HC, Collmer A (2007) A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J 51:32–46

    Article  CAS  PubMed  Google Scholar 

  • Wöhner T, Richter K, Sundin G, Zhao Y, Stockwell V, Sellmann J, Flachowsky H, Hanke MV, Peil A (2018) Inoculation of Malus genotypes with a set of Erwinia amylovora strains indicates a gene-for‐gene relationship between the effector gene eop1 and both Malus floribunda 821 and Malus ‘Evereste’. Plant Pathol 67:938–947

    Article  CAS  Google Scholar 

  • Xin X-F, Nomura K, Ding X, Chen X, Wang K, Aung K, Uribe F, Rosa B, Yao J, Chen J, He SY (2015) Pseudomonas syringae effector avirulence protein E localizes to the host plasma membrane and down-regulates the expression of the nonrace-specific disease resistance1/harpin-induced1-like13 gene required for antibacterial immunity in Arabidopsis. Plant Physiol 169:793–802

  • Xin X-F, Nomura K, Aung K, Velásquez AC, Yao J, Boutrot F, Chang JH, Zipfel C, He SY (2016) Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539:524–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G, Smith DK, Zhu H, Guan Y, Lam TTY (2017) ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 8:28–36

    Article  Google Scholar 

  • Zeng Q, Cui Z, Wang J, Childs KL, Sundin GW, Cooley DR, Yang CH, Garofalo E, Eaton A, Huntley RB, Yuan X, Schultes NP (2018) Comparative genomics of Spiraeoideae-infecting Erwinia amylovora strains provides novel insight to genetic diversity and identifies the genetic basis of a low-virulence strain. Mol Plant Pathol 19:1652–1666

  • Zhang L, Hu J, Han X, Li J, Gao Y, Richards CM, Zhang C, Tian Y, Liu G, Gul H (2019) A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat Commun 10:1–13

  • Zhao Y (2014) Genomics of Erwinia amylovora and related Erwinia species associated with pome fruit trees. In: Genomics of Plant-Associated Bacteria. Springer, Berlin, pp 1–36

  • Zhao Y, Sundin G (2017) Exploring linear and cyclic (di)-nucleotides as messengers for regulation of T3SS and biofilm formation in Erwinia amylovora. J Plant Pathol 99:25–35

  • Zhao Y, Blumer SE, Sundin GW (2005) Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J Bacteriol 187:8088–8103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, He S-Y, Sundin GW (2006) The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Mol Plant Microbe Interact 19:644–654

  • Zhou H, Lin J, Johnson A, Morgan RL, Zhong W, Ma W (2011) Pseudomonas syringae type III effector HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean. Cell Host Microbe 9:177–186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for the writing of this review was provided by Michigan State University AgBioResearch for XY and GS and Biotechnology and Biological Sciences Research Council BBSRC (grant number BB/ P006272/1) for MH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George W. Sundin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Hulin, M.T. & Sundin, G.W. Effectors, chaperones, and harpins of the Type III secretion system in the fire blight pathogen Erwinia amylovora: a review. J Plant Pathol 103 (Suppl 1), 25–39 (2021). https://doi.org/10.1007/s42161-020-00623-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-020-00623-1

Keywords

Navigation