Skip to main content
Log in

Purification of Colloidal Nanocrystals Along the Road to Highly Efficient Photovoltaic Devices

  • Invited Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Colloidal semiconducting nanocrystals, also called colloidal quantum dots (QDs) afford efficient photoconversion from visible to infrared wavelength owing to their size-dependent optoelectronic properties. To manufacture the highly performing devices utilizing colloidal NCs, however, unreacted impurities should be removed following synthesis. As the scale of NCs synthesis increases, especially in industry, the need is heightened for large-scale purification methods that can retain the desirable optoelectronic characteristics as of as-synthesized samples. Particularly, for the use of colloidal quantum dots (QD) films for photovoltaic active layers, control over the surface during the purification needs keen attention because residual impurities or trap states introduced by inappropriate treatments during the purification are detrimental to the carrier collection efficiency of the device. In this article, we review several approaches to the purification of QDs and their successful implications for formation of the efficient photovoltaic devices. We group the purification methods according to the key property by which the separation is achieved, and discuss the scalability of each method specifically focusing on the possibility of implementing a continuous process flow that is compatible with continuous synthesis processes developed for large scale production of QDs. Finally, we present recent efforts for the highly efficient photovoltaic QD devices and discuss the importance of purification in terms of device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from ref. [39] with permission

Fig. 2

Adapted from ref. [53] with permission

Fig. 3

Adapted from ref. [54] with permission

Fig. 4

Adapted from ref. [63] with permission

Fig. 5

Adapted from ref. [71] with permission

Fig. 6

Adapted from refs. [75] and [17] with permission

Similar content being viewed by others

References

  1. Geißler, D., Charbonnière, L. J. J., Ziessel, R. F. F., Butlin, N. G. G., Löhmannsröben, H. G. G., & Hildebrandt, N. (2010). Quantum dot biosensors for ultrasensitive multiplexed diagnostic. Angewandte Chemie International Edition, 49(8), 1396–1401. https://doi.org/10.1002/anie.200906399.

    Article  Google Scholar 

  2. Sahoo, D., Mandal, A., Mitra, T., Chakraborty, K., Bardhan, M., & Dasgupta, A. K. K. (2018). Nanosensing of pesticides by zinc oxide quantum dot: An optical and electrochemical approach for the detection of pesticides in water. Journal of Agricultural and Food Chemistry, 66(2), 414–423. https://doi.org/10.1021/acs.jafc.7b04188.

    Article  Google Scholar 

  3. Zhao, J., Bardecker, J. A. A., Munro, A. M. M., Liu, M. S. S., Niu, Y., Ding, I. K. K., et al. (2006). Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Letters, 6(3), 463–467. https://doi.org/10.1021/nl052417e.…

    Article  Google Scholar 

  4. Bernardin, A., Cazet, A., Guyon, L., Delannoy, P., Vinet, F., Bonnaffé, D., et al. (2010). Copper-free click chemistry for highly luminescent quantum dot conjugates: Application to in vivo metabolic imaging. Bioconjugate Chemistry, 21(4), 583–588. https://doi.org/10.1021/bc900564w.

    Article  Google Scholar 

  5. Hildebrandt, N., Spillmann, C. M. M., Russ Algar, W., Pons, T., Stewart, M. H. H., Oh, E., et al. (2017). Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.6b00030.

    Article  Google Scholar 

  6. Moon, H., Lee, C., Lee, W., Kim, J., & Chae, H. (2019). Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Advanced Materials, 31(34), 1804294. https://doi.org/10.1002/adma.201804294.

    Article  Google Scholar 

  7. Choi, M. K. K., Yang, J., Kim, D. C., Dai, Z., Kim, J., Seung, H., et al. (2018). Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes. Advanced Materials, 30(1), 1703279. https://doi.org/10.1002/adma.201703279.

    Article  Google Scholar 

  8. Carey, G. H. H., Abdelhady, A. L. L., Ning, Z., Thon, S. M. M., Bakr, O. M. M., & Sargent, E. H. H. (2015). Colloidal quantum dot solar cells. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.5b00063.

    Article  Google Scholar 

  9. Shen, Y., Gee, M. Y. Y., Tan, R., Pellechia, P. J. J., & Greytak, A. B. B. (2013). Purification of quantum dots by gel permeation chromatography and the effect of excess ligands on shell growth and ligand exchange. Chemistry of Materials, 25(14), 2838–2848. https://doi.org/10.1021/cm4012734.

    Article  Google Scholar 

  10. Tan, R., Shen, Y., Roberts, S. K. K., Gee, M. Y. Y., Blom, D. A. A., & Greytak, A. B. B. (2015). Reducing competition by coordinating solvent promotes morphological control in alternating layer growth of CdSe/CdS core/shell quantum dots. Chemistry of Materials, 27(21), 7468–7480. https://doi.org/10.1021/acs.chemmater.5b03588.

    Article  Google Scholar 

  11. Tagliazucchi, M., Tice, D. B. B., Sweeney, C. M. M., Morris-Cohen, A. J. J., & Weiss, E. A. A. (2011). Ligand-controlled rates of photoinduced electron transfer in hybrid CdSe nanocrystal/poly(viologen) films. ACS Nano, 5(12), 9907–9917. https://doi.org/10.1021/nn203683s.

    Article  Google Scholar 

  12. King, L. A., & Riley, D. J. (2012). Importance of QD purification procedure on surface adsorbance of QDs and performance of QD sensitized photoanodes. Journal of Physical Chemistry C. https://doi.org/10.1021/jp210290j.

    Article  Google Scholar 

  13. Lai, C. F. F., Tien, Y. C. C., Tong, H. C. C., Zhong, C. Z. Z., & Lee, Y. C. C. (2018). High-performance quantum dot light-emitting diodes using chip-scale package structures with high reliability and wide color gamut for backlight displays. RSC Advances, 8(63), 35966–35972. https://doi.org/10.1039/c8ra07928e.

    Article  Google Scholar 

  14. Zhang, J., Gao, J., Miller, E. M., Luther, J. M., & Beard, M. C. (2014). Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano, 8(1), 614–622. https://doi.org/10.1021/nn405236k.

    Article  Google Scholar 

  15. Choi, H., Ko, J. H., Kim, Y. H., & Jeong, S. (2013). Steric-hindrance-driven shape transition in PbS quantum dots: Understanding size-dependent stability. Journal of the American Chemical Society, 135(14), 5278–5281. https://doi.org/10.1021/ja400948t.

    Article  Google Scholar 

  16. Gu, M., Wang, Y., Yang, F., Lu, K., Xue, Y., Wu, T., et al. (2019). Stable PbS quantum dot ink for efficient solar cells by solution-phase ligand engineering. Journal of Materials Chemistry A, 7(26), 15951–15959. https://doi.org/10.1039/c9ta02393c.

    Article  Google Scholar 

  17. Song, J. H., Kim, T., Park, T., & Jeong, S. (2020). Suppression of hydroxylation on the surface of colloidal quantum dots to enhance the open-circuit voltage of photovoltaics. Journal of Materials Chemistry A, 8(9), 4844–4849. https://doi.org/10.1039/c9ta12598a.

    Article  Google Scholar 

  18. Carey, G. H., Kramer, I. J., Kanjanaboos, P., Moreno-Bautista, G., Voznyy, O., Rollny, L., et al. (2014). Electronically active impurities in colloidal quantum dot solids. ACS Nano, 8(11), 11763–11769. https://doi.org/10.1021/nn505343e.

    Article  Google Scholar 

  19. Aldana, J., Wang, Y. A. A., & Peng, X. (2001). Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. Journal of the American Chemical Society, 123(36), 8844–8850. https://doi.org/10.1021/ja016424q.

    Article  Google Scholar 

  20. Qu, L., Peng, Z. A. A., & Peng, X. (2001). Alternative routes toward high quality CdSe nanocrystals. Nano Letters, 1(6), 333–337. https://doi.org/10.1021/nl0155532.

    Article  Google Scholar 

  21. Yu, W. W., Qu, L., Guo, W., & Peng, X. (2003). Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 15(14), 2854–2860. https://doi.org/10.1021/cm034081k.

    Article  Google Scholar 

  22. Murray, C. B., Norris, D. J., & Bawendi, M. G. (1993). Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. Journal of the American Chemical Society, 115(19), 8706–8715. https://doi.org/10.1021/ja00072a025.

    Article  Google Scholar 

  23. Zhang, H., Son, J. S., Jang, J., Lee, J. S., Ong, W. L., Malen, J. A., et al. (2013). Bi1xSbx alloy nanocrystals: Colloidal synthesis, charge transport, and thermoelectric properties. ACS Nano, 7(11), 10296–10306. https://doi.org/10.1021/nn404692s.

    Article  Google Scholar 

  24. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., et al. (1997). (CdSe) ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. Journal of Physical Chemistry B, 101(46), 9463–9475. https://doi.org/10.1021/jp971091y.…

    Article  Google Scholar 

  25. Murray, C. B., Kagan, C. R., & Bawendi, M. G. (1995). Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science, 270(5240), 1335–1338. https://doi.org/10.1126/science.270.5240.1335.

    Article  Google Scholar 

  26. Yu, P., Beard, M. C., Ellingson, R. J., Fernere, S., Curtis, C., Drexler, J., et al. (2005). Absorption cross-section and related optical properties of colloidal InAs quantum dots. Journal of Physical Chemistry B, 109(15), 7084–7087. https://doi.org/10.1021/jp046127i.

    Article  Google Scholar 

  27. Cros-Gagneux, A., Delpech, F., Nayral, C., Cornejo, A., Coppel, Y., & Chaudret, B. (2010). Surface chemistry of InP quantum dots: A comprehensive study. Journal of the American Chemical Society, 132(51), 18147–18157. https://doi.org/10.1021/ja104673y.

    Article  Google Scholar 

  28. Virieux, H., Le Troedec, M., Cros-Gagneux, A., Ojo, W. S., Delpech, F., Nayral, C., et al. (2012). InP/ZnS nanocrystals: Coupling NMR and XPS for fine surface and interface description. Journal of the American Chemical Society, 134(48), 19701–19708. https://doi.org/10.1021/ja307124m.

    Article  Google Scholar 

  29. Morris-Cohen, A. J., Donakowski, M. D., Knowles, K. E., & Weiss, E. A. (2010). The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide. Journal of Physical Chemistry C, 114(2), 897–906. https://doi.org/10.1021/jp909492w.

    Article  Google Scholar 

  30. Morris-Cohen, A. J., Frederick, M. T., Lilly, G. D., McArthur, E. A., & Weiss, E. A. (2010). Organic surfactant-controlled composition of the surfaces of CdSe quantum dots. Journal of Physical Chemistry Letters, 1(7), 1078–1081. https://doi.org/10.1021/jz100224q.

    Article  Google Scholar 

  31. Peng, X., Wilson, T. E., Alivisatos, A. P., & Schultz, P. G. (1997). Synthesis and Isolation of a homodimer of cadmium selenide nanocrystals. Angewandte Chemie (International Edition in English), 36(1–2), 145–147. https://doi.org/10.1002/anie.199701451.

    Article  Google Scholar 

  32. Ding, T. X., Olshansky, J. H., Leone, S. R., & Alivisatos, A. P. (2015). Efficiency of hole transfer from photoexcited quantum dots to covalently linked molecular species. Journal of the American Chemical Society, 137(5), 2021–2029. https://doi.org/10.1021/ja512278a.

    Article  Google Scholar 

  33. Anderson, N. C., Hendricks, M. P., Choi, J. J., & Owen, J. S. (2013). Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. Journal of the American Chemical Society, 135(49), 18536–18548. https://doi.org/10.1021/ja4086758.

    Article  Google Scholar 

  34. Hassinen, A., Moreels, I., De Nolf, K., Smet, P. F., Martins, J. C., & Hens, Z. (2012). Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. Journal of the American Chemical Society, 134(51), 20705–20712. https://doi.org/10.1021/ja308861d.

    Article  Google Scholar 

  35. Shakeri, B., & Meulenberg, R. W. (2015). A closer look into the traditional purification process of CdSe semiconductor quantum dots. Langmuir, 31(49), 13433–13440. https://doi.org/10.1021/acs.langmuir.5b03584.

    Article  Google Scholar 

  36. Cass, L. C., Malicki, M., & Weiss, E. A. (2013). The chemical environments of oleate species within samples of oleate-coated PbS quantum dots. Analytical Chemistry, 85(14), 6974–6979. https://doi.org/10.1021/ac401623a.

    Article  Google Scholar 

  37. Smith, A. M., Mohs, A. M., & Nie, S. (2009). Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nature Nanotechnology, 4(1), 56–63. https://doi.org/10.1038/nnano.2008.360.

    Article  Google Scholar 

  38. Yu, W. W., & Peng, X. (2002). Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angewandte Chemie International Edition, 41(13), 2368–2371. https://doi.org/10.1002/1521-3773(20020703)41:13%3c2368:AID-ANIE2368%3e3.0.CO;2-G.

    Article  Google Scholar 

  39. Shen, Y., Weeranoppanant, N., Xie, L., Chen, Y., Lusardi, M. R., Imbrogno, J., et al. (2017). Multistage extraction platform for highly efficient and fully continuous purification of nanoparticles. Nanoscale, 9(23), 7703–7707. https://doi.org/10.1039/c7nr01826f.

    Article  Google Scholar 

  40. Yang, Y., Li, J., Lin, L., & Peng, X. (2015). An efficient and surface-benign purification scheme for colloidal nanocrystals based on quantitative assessment. Nano Research, 8(10), 3353–3364. https://doi.org/10.1007/s12274-015-0835-6.

    Article  Google Scholar 

  41. Nan, W., Niu, Y., Qin, H., Cui, F., Yang, Y., Lai, R., et al. (2012). Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. Journal of the American Chemical Society, 134(48), 19685–19693. https://doi.org/10.1021/ja306651x.

    Article  Google Scholar 

  42. Li, Z., Ji, Y., Xie, R., Grisham, S. Y., & Peng, X. (2011). Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development. Journal of the American Chemical Society, 133(43), 17248–17256. https://doi.org/10.1021/ja204538f.

    Article  Google Scholar 

  43. Salant, A., Shalom, M., Hod, I., Faust, A., Zaban, A., & Banin, U. (2010). Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition. ACS Nano, 4(10), 5962–5968. https://doi.org/10.1021/nn1018208.

    Article  Google Scholar 

  44. Salant, A., Shalom, M., Tachan, Z., Buhbut, S., Zaban, A., & Banin, U. (2012). Quantum rod-sensitized solar cell: Nanocrystal shape effect on the photovoltaic properties. Nano Letters, 12(4), 2095–2100. https://doi.org/10.1021/nl300356e.

    Article  Google Scholar 

  45. Jia, S., Banerjee, S., & Herman, I. P. (2008). Mechanism of the electrophoretic deposition of CdSe nanocrystal films: Influence of the nanocrystal surface and charge. Journal of Physical Chemistry C, 112(1), 162–171. https://doi.org/10.1021/jp0733320.

    Article  Google Scholar 

  46. Lhuillier, E., Hease, P., Ithurria, S., & Dubertret, B. (2014). Selective electrophoretic deposition of CdSe nanoplatelets. Chemistry of Materials, 26(15), 4514–4520. https://doi.org/10.1021/cm501713s.

    Article  Google Scholar 

  47. Bass, J. D., Ai, X., Bagabas, A., Rice, P. M., Topuria, T., Scott, J. C., et al. (2011). An efficient and low-cost method for the purification of colloidal nanoparticles. Angewandte Chemie International Edition, 50(29), 6538–6542. https://doi.org/10.1002/anie.201100112.

    Article  Google Scholar 

  48. Liu, W., Greytak, A. B., Lee, J., Wong, C. R., Park, J., Marshall, L. F., et al. (2010). Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand. Journal of the American Chemical Society, 132(2), 472–483. https://doi.org/10.1021/ja908137d.

    Article  Google Scholar 

  49. Sperling, R. A., Pellegrino, T., Li, J. K., Chang, W. H., & Parak, W. J. (2006). Electrophoretic separation of nanoparticles with a discrete number of functional groups. Advanced Functional Materials, 16(7), 943–948. https://doi.org/10.1002/adfm.200500589.

    Article  Google Scholar 

  50. Ho, S., Critchley, K., Lilly, G. D., Shim, B., & Kotov, N. A. (2009). Free flow electrophoresis for the separation of CdTe nanoparticles. Journal of Materials Chemistry, 19(10), 1390–1394. https://doi.org/10.1039/b820703h.

    Article  Google Scholar 

  51. Knoppe, S., Boudon, J., Dolamic, I., Dass, A., & Bürgi, T. (2011). Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. Analytical Chemistry, 83(13), 5056–5061. https://doi.org/10.1021/ac200789v.

    Article  Google Scholar 

  52. Howarth, M., Liu, W., Puthenveetil, S., Zheng, Y., Marshall, L. F., Schmidt, M. M., et al. (2008). Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nature Methods, 5(5), 397–399. https://doi.org/10.1038/nmeth.1206.

    Article  Google Scholar 

  53. Kim, D., Park, H. K., Choi, H., Noh, J., Kim, K., & Jeong, S. (2014). Continuous flow purification of nanocrystal quantum dots. Nanoscale, 6(23), 14467–14472. https://doi.org/10.1039/c4nr04351k.

    Article  Google Scholar 

  54. Lim, H., Woo, J. Y., Lee, D. C., Lee, J., Jeong, S., & Kim, D. (2017). Continuous purification of colloidal quantum dots in large-scale using porous electrodes in flow channel. Scientific Reports, 7(1), 43581. https://doi.org/10.1038/srep43581.

    Article  Google Scholar 

  55. Zimmer, J. P., Kim, S.-W., Ohnishi, S., Tanaka, E., Frangioni, J. V., & Bawendi, M. G. (2006). Size series of small indium arsenide–zinc selenide core–shell nanocrystals and their application to in vivo imaging. Journal of the American Chemical Society, 128(8), 2526–2527. https://doi.org/10.1021/ja0579816.

    Article  Google Scholar 

  56. Krueger, K. M., Al-Somali, A. M., Falkner, J. C., & Colvin, V. L. (2005). Characterization of nanocrystalline CdSe by size exclusion chromatography. Analytical Chemistry, 77(11), 3511–3515. https://doi.org/10.1021/ac0481912.

    Article  Google Scholar 

  57. Wang, M., Dykstra, T. E., Salvador, M. R., Lou, X., Scholes, G. D., & Winnik, M. A. (2006). Colloidal CdSe nanocrystals passivated by a dye-labeled multidentate polymer: Quantitative analysis using size exclusion chromatography. Angewandte Chemie International Edition, 45, 2221–2224.

    Article  Google Scholar 

  58. Shen, Y., Roberge, A., Tan, R., Gee, M. Y., Gary, D. C., Huang, Y., et al. (2016). Gel permeation chromatography as a multifunctional processor for nanocrystal purification and on-column ligand exchange chemistry. Chemical Science, 7(9), 5671–5679. https://doi.org/10.1039/C6SC01301E.

    Article  Google Scholar 

  59. Shen, Y., Gee, M. Y., & Greytak, A. B. (2017). Purification technologies for colloidal nanocrystals. Chemical Communications, 53(5), 827–841. https://doi.org/10.1039/C6CC07998A.

    Article  Google Scholar 

  60. Roberge, A., Stein, J. L., Shen, Y., Cossairt, B. M., & Greytak, A. B. (2017). Purification and in situ ligand exchange of metal-carboxylate-treated fluorescent InP quantum dots via gel permeation chromatography. The Journal of Physical Chemistry Letters, 8(17), 4055–4060. https://doi.org/10.1021/acs.jpclett.7b01772.

    Article  Google Scholar 

  61. Kroupa, D. M., Arias, D. H., Blackburn, J. L., Carroll, G. M., Granger, D. B., Anthony, J. E., et al. (2018). Control of energy flow dynamics between tetracene ligands and PbS quantum dots by size tuning and ligand coverage. Nano Letters, 18(2), 865–873. https://doi.org/10.1021/acs.nanolett.7b04144.

    Article  Google Scholar 

  62. Dong, Y., Qiao, T., Kim, D., Parobek, D., Rossi, D., & Son, D. H. (2018). Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Letters, 18(6), 3716–3722. https://doi.org/10.1021/acs.nanolett.8b00861.

    Article  Google Scholar 

  63. Kelley, M. L., Letton, J., Simin, G., Ahmed, F., Love-Baker, C. A., Greytak, A. B., et al. (2020). Photovoltaic and photoconductive action due to PbS quantum dots on graphene/SiC Schottky diodes from NIR to UV. ACS Applied Electronic Materials, 2(1), 134–139. https://doi.org/10.1021/acsaelm.9b00651.

    Article  Google Scholar 

  64. Dunlap, J. H., Loszko, A. F., Flake, R. A., Huang, Y., Benicewicz, B. C., & Greytak, A. B. (2018). Multiply-binding polymeric imidazole ligands: Influence of molecular weight and monomer sequence on colloidal quantum dot stability. Journal of Physical Chemistry C, 122(46), 26756–26763. https://doi.org/10.1021/acs.jpcc.8b08984.

    Article  Google Scholar 

  65. Wang, W., Kapur, A., Ji, X., Zeng, B., Mishra, D., & Mattoussi, H. (2016). Multifunctional and high affinity polymer ligand that provides bio-orthogonal coating of quantum dots. Bioconjugate Chemistry, 27(9), 2024–2036. https://doi.org/10.1021/acs.bioconjchem.6b00309.

    Article  Google Scholar 

  66. Chen, Y., Cordero, J. M., Wang, H., Franke, D., Achorn, O. B., Freyria, F. S., et al. (2018). A ligand system for the flexible functionalization of quantum dots via click chemistry. Angewandte Chemie International Edition, 57(17), 4652–4656. https://doi.org/10.1002/anie.201801113.

    Article  Google Scholar 

  67. Calabretta, M., Jamison, J. A., Falkner, J. C., Liu, Y., Yuhas, B. D., Matthews, K. S., et al. (2005). Analytical ultracentrifugation for characterizing nanocrystals and their bioconjugates. Nano Letters, 5(5), 963–967. https://doi.org/10.1021/nl047926f.

    Article  Google Scholar 

  68. Lees, E. E., Gunzburg, M. J., Nguyen, T.-L., Howlett, G. J., Rothacker, J., Nice, E. C., et al. (2008). Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation. Nano Letters, 8(9), 2883–2890. https://doi.org/10.1021/nl801629f.

    Article  Google Scholar 

  69. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I., & Hersam, M. C. (2006). Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotechnology, 1(1), 60–65. https://doi.org/10.1038/nnano.2006.52.

    Article  Google Scholar 

  70. Kang, J., Sangwan, V. K., Wood, J. D., Liu, X., Balla, I., Lam, D., et al. (2016). Layer-by-layer sorting of rhenium disulfide via high-density isopycnic density gradient ultracentrifugation. Nano Letters, 16(11), 7216–7223. https://doi.org/10.1021/acs.nanolett.6b03584.

    Article  Google Scholar 

  71. Kim, J. Y., Adinolfi, V., Sutherland, B. R., Voznyy, O., Kwon, S. J., Kim, T. W., et al. (2015). Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films. Nature Communications, 6, 7772. https://doi.org/10.1038/ncomms8772.

    Article  Google Scholar 

  72. Choi, H., & Jeong, S. (2018). A review on eco-friendly quantum dot solar cells: Materials and manufacturing processes. International Journal of Precision Engineering and Manufacturing Green Technology. https://doi.org/10.1007/s40684-018-0037-2.

    Article  Google Scholar 

  73. Kim, T., Song, J. H., Park, T., & Jeong, S. (2020). Efficiency limit of colloidal quantum dot solar cells: Effect of optical interference on active layer absorption. ACS Energy Letters, 5, 248–251. https://doi.org/10.1021/acsenergylett.9b02504.

    Article  Google Scholar 

  74. Yuan, M., Liu, M., & Sargent, E. H. (2016). Colloidal quantum dot solids for solution-processed solar cells. Nature Energy, 1(3), 16016–16024. https://doi.org/10.1038/nenergy.2016.16.

    Article  Google Scholar 

  75. Zhitomirsky, D., Kramer, I. J., Labelle, A. J., Fischer, A., Debnath, R., Pan, J., et al. (2012). Colloidal quantum dot photovoltaics: The effect of polydispersity. Nano Letters, 12(2), 1007–1012. https://doi.org/10.1021/nl2041589.

    Article  Google Scholar 

  76. Jean, J., Mahony, T. S., Bozyigit, D., Sponseller, M., Holovský, J., Bawendi, M. G., et al. (2017). Radiative efficiency limit with band tailing exceeds 30% for quantum dot solar cells. ACS Energy Letters, 2(11), 2616–2624. https://doi.org/10.1021/acsenergylett.7b00923.

    Article  Google Scholar 

  77. Voznyy, O., Levina, L., Fan, F., Walters, G., Fan, J. Z., Kiani, A., et al. (2017). Origins of stokes shift in PbS nanocrystals. Nano Letters, 17(12), 7191–7195. https://doi.org/10.1021/acs.nanolett.7b01843.

    Article  Google Scholar 

  78. Suber, L., Imperatori, P., Pilloni, L., Caschera, D., Angelini, N., Mezzi, A., et al. (2018). Nanocluster superstructures or nanoparticles? The self-consuming scaffold decides. Nanoscale, 10(16), 7472–7483. https://doi.org/10.1039/c7nr09520a.

    Article  Google Scholar 

  79. Song, J. H., Choi, H., Kim, Y. H., & Jeong, S. (2017). High performance colloidal quantum dot photovoltaics by controlling protic solvents in ligand exchange. Advanced Energy Materials, 7(15), 1700301. https://doi.org/10.1002/aenm.201700301.

    Article  Google Scholar 

  80. Liu, M., Voznyy, O., Sabatini, R., García De Arquer, F. P., Munir, R., Balawi, A. H., et al. (2017). Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nature Materials, 16(2), 258–263. https://doi.org/10.1038/nmat4800.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Creative Materials Discovery Program through the National Research Foundation of Korea (NRF-2019M3D1A1078299) funded by Ministry of Science and ICT. This work was also supported by the Technology Innovation Program (20192050100060) and Korean Energy Technology Evaluation and Planning (20173010013200‬) ‬funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and the NRF Grant funded by the MSIT (2019R1A2B5B03070407). ABG and MLK acknowledge support from the US NSF (ECCS-EPMD program, Grant 1711322). MLK additionally acknowledges an NSF IGERT Graduate Fellowship through Grant 1250052. ‬

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Duckjong Kim, Andrew B. Greytak or Sohee Jeong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Kelley, M.L., Kim, D. et al. Purification of Colloidal Nanocrystals Along the Road to Highly Efficient Photovoltaic Devices. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1309–1321 (2021). https://doi.org/10.1007/s40684-020-00231-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00231-5

Keywords

Navigation