Skip to main content
Log in

Selective electro — thermal growth of zinc oxide nanowire on photolithographically patterned electrode for microsensor applications

  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Hydrothermal growth of zinc oxide (ZnO) nanowire (NW) enables a facile synthesis of versatile 1D nanostructure, but the conventional bulk heating procedure is assessed to be unsuitable for microsensor application in terms of selectivity and power consumption. In this study, we introduce selective electro-thermal growth of ZnO NW on photolithographically patterned electrode in the liquid environment. By applying constant current to the targeted electrode, densely packed ZnO NWs are successfully synthesized only at the desired electrode with very small power consumption. It is also confirmed that the electro — thermally grown ZnO NW network connecting two distinct electrode can be utilized as photosensitive channel, proving that this process as well as the resultant ZnO NW has a high potential for microsensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ZnO:

Zinc oxide

NW:

Nanowire

NP:

Nanoparticle

References

  1. Goldberger, J., Sirbuly, D. J., Law, M., and Yang, P., “ZnO Nanowire Transistors,” The Journal of Physical Chemistry B, Vol. 109, No. 1, pp. 9–14, 2005.

    Article  Google Scholar 

  2. Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., et al., “Room- Temperature Ultraviolet Nanowire Nanolasers,” Science, Vol. 292, No. 5523, pp. 18997–1899, 2001.

    Article  Google Scholar 

  3. Yeo, J., Hong, S., Wanit, M., Kang, H. W., Lee, D., et al., “Rapid, One-Step, Digital Selective Growth of ZnO Nanowires on 3D Structures Using Laser Induced Hydrothermal Growth,” Advanced Functional Materials, Vol. 23, No. 26, pp. 3316–3323, 2013.

    Article  Google Scholar 

  4. Choi, A., Kim, K., Jung, H.-I., and Lee, S. Y., “ZnO Nanowire Biosensors for Detection of Biomolecular Interactions in Enhancement Mode,” Sensors and Actuators B: Chemical, Vol. 148, No. 2, pp. 577–582, 2010.

    Article  Google Scholar 

  5. Law, M., Greene, L. E., Johnson, J. C., Saykally, R., and Yang, P., “Nanowire Dye-Sensitized Solar Cells,” Nature Materials, Vol. 4, No. 6, pp. 455–459, 2005.

    Article  Google Scholar 

  6. Ko, S. H., Lee, D., Kang, H. W., Nam, K. H., Yeo, J. Y., et al., “Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell,” Nano Letters, Vol. 11, No. 2, pp. 666–671, 2011

    Article  Google Scholar 

  7. Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J. C., et al., “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angewandte Chemie International Edition, Vol. 42, No. 26, pp. 3031–3034, 2003.

    Article  Google Scholar 

  8. Vayssieres, L., “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Advanced Materials, Vol. 15, No. 5, pp. 464–466, 2003.

    Article  Google Scholar 

  9. Greene, L. E., Law, M., Tan, D. H., Montano, M., Goldberger, J., et al., “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds,” Nano Letters, Vol. 5, No. 7, pp. 1231–1236, 2005.

    Article  Google Scholar 

  10. Hong, S., Yeo, J., Manorotkul, W., Kang, H. W., Lee, J., et al., “Digital Selective Growth of a ZnO Nanowire Array by Large Scale Laser Decomposition of Zinc Acetate,” Nanoscale, Vol. 5, No. 9, pp. 3698–3703, 2013.

    Article  Google Scholar 

  11. Ko, S. H., “Review of the Multi-Scale Nano-Structure Approach to the Development of High Efficiency Solar Cells,” Smart Science, Vol. 2, No. 2, pp. 54–62, 2014.

    Google Scholar 

  12. Herman, I., Yeo, J., Hong, S., Lee, D., Nam, K. H., et al., “Hierarchical Weeping Willow Nano-Tree Growth and Effect of Branching on Dye-Sensitized Solar Cell Efficiency,” Nanotechnology, Vol. 23, No. 19, Paper No. 194005, 2012.

    Article  Google Scholar 

  13. Kang, B., Pearton, S., and Ren, F., “Low Temperature (100C) Patterned Growth of ZnO Nanorod Arrays on Si,” Applied Physics Letters, Vol. 90, No. 8, p. 083104, 2007.

    Article  Google Scholar 

  14. Ko, S. H., Lee, D., Hotz, N., Yeo, J., Hong, S., et al., “Digital Selective Growth of ZnO Nanowire Arrays from Inkjet-Printed Nanoparticle Seeds on a Flexible Substrate,” Langmuir, Vol. 28, No. 10, pp. 4787–4792, 2011.

    Article  Google Scholar 

  15. Kwon, J., Hong, S., Lee, H., Yeo, J., Lee, S. S., et al., “Direct Selective Growth of ZnO Nanowire Arrays from Inkjet-Printed Zinc Acetate Precursor on a Heated Substrate,” Nanoscale Research Letters, Vol. 8, No. 1, pp. 1–6, 2013.

    Article  Google Scholar 

  16. Rahul, S., Balasubramanian, K., and Venkatesh, S., “Inkjet Printing of Yttria Stabilized Zirconia Nano Particles on Metal Substrates,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 12, pp. 2553–2561, 2015.

    Article  Google Scholar 

  17. Kang, H. W., Yeo, J., Hwang, J. O., Hong, S., Lee, P., et al., “Simple ZnO Nanowires Patterned Growth by Microcontact Printing for High Performance Field Emission Device,” The Journal of Physical Chemistry C, Vol. 115, No. 23, pp. 11435–11441, 2011.

    Article  Google Scholar 

  18. Choi, E. K., Park, J., Kim, B. S., and Lee, D., “Fabrication of Electrodes and Near-Field Communication Tags Based on Screen Printing of Silver Seed Patterns and Copper Electroless Plating,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 10, pp. 2199–2204, 2015.

    Article  Google Scholar 

  19. Liu, Y.-K., Sie, Y.-Y., Liu, C.-A., and Lee, M.-T., “A Novel Laser Direct Writing System Integrated with A&F XXY Alignment Platform for Rapid Fabrication of Flexible Electronics,” Smart Science, Vol. 3, No. 2, pp. 87–91, 2015.

    Google Scholar 

  20. Chu, W.-S., Kim, C.-S., Lee, H.-T., Choi, J.-O., Park, J.-I., et al., “Hybrid Manufacturing in Micro/Nano Scale: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp.75–92, 2014.

    Article  Google Scholar 

  21. Yeo, J., Kim, G., Hong, S., Lee, J., Kwon, J., et al., “Single Nanowire Resistive Nano-Heater for Highly Localized Thermo-Chemical Reactions: Localized Hierarchical Heterojunction Nanowire Growth,” Small, Vol. 10, No. 24, pp. 5015–5022, 2014.

    Article  Google Scholar 

  22. Yeo, J., Hong, S., Kim, G., Lee, H., Suh, Y. D., et al., “Laser- Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design,” ACS Nano, Vol. 9, No. 6, pp. 6059–6068, 2015.

    Article  Google Scholar 

  23. Qiu, J., Yu, W., Gao, X., and Li, X., “Sol-Gel Assisted ZnO Nanorod Array Template to Synthesize TiO2 Nanotube Arrays,” Nanotechnology, Vol. 17, No. 18, p. 4695, 2006.

    Article  Google Scholar 

  24. Ma, T., Guo, M., Zhang, M., Zhang, Y., and Wang, X., “Density- Controlled Hydrothermal Growth of Well-Aligned ZnO Nanorod Arrays,” Nanotechnology, Vol. 18, No. 3, Paper No. 035605, 2007.

    Article  Google Scholar 

  25. Hong, S., Yeo, J., Manorotkul, W., Kim, G., Kwon, J., et al., “Low- Temperature Rapid Fabrication of ZnO Nanowire UV Sensor Array by Laser-Induced Local Hydrothermal Growth,” Journal of Nanomaterials, Vol. 2013, No. 2, 2013.

    Google Scholar 

  26. Pacholski, C., Kornowski, A., and Weller, H., “Self-Assembly of ZnO: From Nanodots to Nanorods,” Angewandte Chemie International Edition, Vol. 41, No. 7, pp. 1188–1191, 2002.

    Article  Google Scholar 

  27. Wang, X., Zhou, J., Song, J., Liu, J., Xu, N., et al., “Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire,” Nano Letters, Vol. 6, No. 12, pp. 2768–2772, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hwan Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, Y.D., Hong, S., Kim, G. et al. Selective electro — thermal growth of zinc oxide nanowire on photolithographically patterned electrode for microsensor applications. Int. J. of Precis. Eng. and Manuf.-Green Tech. 3, 173–177 (2016). https://doi.org/10.1007/s40684-016-0022-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-016-0022-6

Keywords

Navigation