Skip to main content
Log in

Transition Metal Diborides as Electrode Material for MHD Direct Power Extraction: High-temperature Oxidation of ZrB2-HfB2 Solid Solution with LaB6 Addition

  • Published:
Metallurgical and Materials Transactions E

Abstract

Transition metal borides are being considered for use as potential electrode coating materials in magnetohydrodynamic direct power extraction plants from coal-fired plasma. These electrode materials will be exposed to aggressive service conditions at high temperatures. Therefore, high-temperature oxidation resistance is an important property. Consolidated samples containing an equimolar solid solution of ZrB2-HfB2 with and without the addition of 1.8 mol pct LaB6 were prepared by ball milling of commercial boride material followed by spark plasma sintering. These samples were oxidized at 1773 K (1500 °C) in two different conditions: (1) as-sintered and (2) anodized (10 V in 0.1 M KOH electrolyte). Oxidation studies were carried out in 0.3 × 105 and 0.1 Pa oxygen partial pressures. The anodic oxide layers showed hafnium enrichment on the surface of the samples, whereas the high-temperature oxides showed zirconium enrichment. The anodized samples without LaB6 addition showed about 2.5 times higher oxidation resistance in high-oxygen partial pressures than the as-sintered samples. Addition of LaB6 improved the oxidation resistance in the as-sintered condition by about 30 pct in the high-oxygen partial pressure tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.K. Wright, Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci. 261, 347–59 (1967)

    Article  Google Scholar 

  2. D.B. Meadowcroft, Energy Convers. 8, 185–90 (1968)

    Article  Google Scholar 

  3. N. Ram Mohan, K. Thiagarajan, V. Sivan, Ceram. Int. 20, 143–6 (1994)

    Article  Google Scholar 

  4. G.V. Samsonov, B.A. Kovenskaya, T.I. Serebryakova, Sov. Phys. J. 14, 11–4 (1971)

    Article  Google Scholar 

  5. R. P. Tye and E. V. Clougherty, Proc. Fifth Symp. Thermophys. Prop. Bonilla C F Ed N. Y. Am. Soc. Mech. Eng., 1970, pp. 369–401

  6. M.M. Opeka, I.G. Talmy, J.A. Zaykoski, J. Mater. Sci. 39, 5887–904 (2004)

    Article  Google Scholar 

  7. D.D. Jayaseelan, E. Zapata-Solvas, P. Brown, W.E. Lee, J. Am. Ceram. Soc. 95, 1247–54 (2012)

    Article  Google Scholar 

  8. L. Silvestroni, D. Sciti, J. Am. Ceram. Soc. 94, 1920–30 (2011)

    Article  Google Scholar 

  9. E. Opila, S. Levine, J. Lorincz, J. Mater. Sci. 39, 5969–77 (2004)

    Article  Google Scholar 

  10. X. Zhang, P. Hu, J. Han, L. Xu, S. Meng, Scr. Mater. 57, 1036–9 (2007)

    Article  Google Scholar 

  11. V.A. Lavrenko, V.N. Talash, M. Desmaison-Brut, O.N. Grigor’ev, Y.B. Rudenko, Powder Metall. Met. Ceram. 48, 462–5 (2009)

    Article  Google Scholar 

  12. C. Monticelli, A. Bellosi, M. Dal Colle, J. Electrochem. Soc. 151, B331–9 (2004)

    Article  Google Scholar 

  13. Z. Wang, Q. Zhao, L. Jing, Z. Wu, X. Sun, Ceram. Int. 42, 2926–32 (2015)

    Article  Google Scholar 

  14. Y.-H. Seong, D.K. Kim, Ceram. Int. 40, 15303–11 (2014)

    Article  Google Scholar 

  15. C.M. Carney, P. Mogilvesky, T.A. Parthasarathy, J. Am. Ceram. Soc. 92, 2046–52 (2009)

    Article  Google Scholar 

  16. M.M. Opeka, I.G. Talmy, E.J. Wuchina, J.A. Zaykoski, S.J. Causey, J. Eur. Ceram. Soc. 19, 2405–14 (1999)

    Article  Google Scholar 

  17. E.J. Opila, J. Smith, S.R. Levine, M. Reigel, Open Aerosp. Eng. J. 3, 41–51 (2010)

    Article  Google Scholar 

  18. D. Sciti, L. Silvestroni, M. Nygren, J. Eur. Ceram. Soc. 28, 1287–96 (2008)

    Article  Google Scholar 

  19. J.-G. Song, Mater. Manuf. Process. 25, 724–29 (2010)

    Article  Google Scholar 

  20. S. Otani, T. Aizawa, N. Kieda, J. Alloys Compd. 475, 273–5 (2009)

    Article  Google Scholar 

  21. M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd edition, National Association of Corrosion, 1974

  22. T.A. Parthasarathy, R.A. Rapp, M. Opeka, R.J. Kerans, Acta Mater. 55, 5999–6010 (2007)

    Article  Google Scholar 

  23. W.C. Tripp, H.H. Davis, H.C. Graham, Am. Ceram. Soc. Bullitin 52, 612–6 (1973)

    Google Scholar 

  24. J.B. Berkowitz-Mattuck, J. Electrochem. Soc. 113, 908–14 (1966)

    Article  Google Scholar 

  25. S.R. Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh, J.A. Salem, J. Eur. Ceram. Soc. 22, 2757–67 (2002)

    Article  Google Scholar 

  26. J. Li, T.J. Lenosky, C.J. Först, S. Yip, J. Am. Ceram. Soc. 91, 1475–80 (2008)

    Article  Google Scholar 

  27. J. S. Knyrim and H. Huppertz: Z Naturforsch, 2008, vol. 63b, 707–12

  28. H. Deng, E.C. Dickey, Y. Paderno, V. Paderno, V. Filippov, J. Am. Ceram. Soc. 90, 2603–9 (2007)

    Article  Google Scholar 

  29. Y. Paderno, V. Paderno, V. Filippov, J. Solid State Chem. 154, 165–7 (2000)

    Article  Google Scholar 

  30. W.-M. Guo, J. Vleugels, G.-J. Zhang, P.-L. Wang, O. Van der Biest, J. Eur. Ceram. Soc. 29, 3063–8 (2009)

    Article  Google Scholar 

  31. S.R. Whitman, K.S. Raja, Appl. Surf. Sci. 303, 406–18 (2014)

    Article  Google Scholar 

  32. K. Shugart, B. Patterson, D. Lichtman, S. Liu, E. Opila, J. Am. Ceram. Soc. 97, 2279–85 (2014)

    Article  Google Scholar 

  33. M. Miller-Oana, E.L. Corral, J. Am. Ceram. Soc. 99, 619–26 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Energy Technology Laboratory, US Department of Energy (Office of Fossil Energy) grant number: DE-FE0022988. Laboratory help from Colin Lunstrum is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Sitler.

Additional information

Manuscript submitted December 1, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitler, S., Hill, C., Raja, K.S. et al. Transition Metal Diborides as Electrode Material for MHD Direct Power Extraction: High-temperature Oxidation of ZrB2-HfB2 Solid Solution with LaB6 Addition. Metallurgical and Materials Transactions E 3, 90–99 (2016). https://doi.org/10.1007/s40553-016-0072-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40553-016-0072-2

Keywords

Navigation