Skip to main content
Log in

The identification of fall history using maximal and rapid isometric torque characteristics of the hip extensors in healthy, recreationally active elderly females: a preliminary investigation

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aims

Maximal and rapid torque characteristics of the hip extensor muscles play an important role in fall prevention and other balance-related performances; however, few studies have investigated the ability of these variables at identifying fall-history status in healthy, recreationally active elderly adults. This study aimed to examine the effectiveness of maximal and rapid isometric torque characteristics of the hip extensor muscles to differentiate between healthy, recreationally active elderly females with (fallers) and without (non-fallers) a history a falls.

Methods

Six elderly female fallers (mean ± SD: age = 73 ± 7 year; mass = 68 ± 16 kg; height = 160 ± 5 cm) and nine elderly female non-fallers (age = 71 ± 7 year; mass = 66 ± 16 kg; height = 157 ± 6 cm) performed two isometric maximal voluntary contractions (MVCs) of the hip extensor muscles. Peak torque (PT) and absolute and relative rate of torque development (RTD) at the early (0–50 ms) and late (100–200 ms) phases of muscle contraction were examined during each MVC.

Results

Absolute and relative RTD at 0–50 ms were greater (P = 0.039 and 0.011, respectively) in the non-fallers compared to the fallers. However, no group-related differences (P = 0.160–0.573) were observed for PT nor absolute and relative RTD at 100–200 ms.

Conclusions

Early rapid strength production of the hip extensor muscles may be a sensitive and effective measure for discriminating between elderly females of different fall histories. These findings may provide important insight regarding implications for the assessment of fall risk and in the development of proper training programs aimed at minimizing the occurrence of falls and other balance-related injuries in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tromp A, Pluijm S, Smit J, Deeg D, Bouter L, Lips P (2001) Fall-risk screening test: a prospective study on predictors for falls in community-dwelling elderly. J Clin Epidemiol 54(8):837–844

    Article  CAS  PubMed  Google Scholar 

  2. Gill TM, Murphy TE, Gahbauer EA, Allore HG (2013) Association of injurious falls with disability outcomes and nursing home admissions in community-living older persons. Am J Epidemiol 178(3):418–425. doi:10.1093/aje/kws554

    Article  PubMed Central  PubMed  Google Scholar 

  3. Crozara LF, Morcelli MH, Marques NR, Hallal CZ, Spinoso DH, de Almeida Neto AF, Cardozo AC, Gonçalves M (2013) Motor readiness and joint torque production in lower limbs of older women fallers and non-fallers. J Electromyogr Kinesiol. doi:10.1016/j.jelekin.2013.04.016 (in press)

    PubMed  Google Scholar 

  4. Bloem BR, Steijns JA, Smits-Engelsman BC (2003) An update on falls. Curr Opin Neurol 16(1):15–26

    Article  PubMed  Google Scholar 

  5. Rubenstein LZ (2006) Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing 35(Suppl 2):ii37–ii41

    PubMed  Google Scholar 

  6. Thompson BJ, Ryan ED, Sobolewski EJ, Conchola EC, Cramer JT (2013) Age related differences in maximal and rapid torque characteristics of the leg extensors and flexors in young, middle-aged and old men. Exp Gerontol 48(2):277–282. doi:10.1016/j.exger.2012.10.009

    Article  PubMed  Google Scholar 

  7. Wood B, Bilclough J, Bowron A, Walker R (2002) Incidence and prediction of falls in Parkinson’s disease: a prospective multidisciplinary study. J Neurol Neurosurg Psychiatry 72(6):721–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bean JF, Kiely DK, Leveille SG, Herman S, Huynh C, Fielding R, Frontera W (2002) The 6-minute walk test in mobility-limited elders: what is being measured? J Gerontol A Biol Sci Med Sci 57(11):M751–M756

    Article  PubMed  Google Scholar 

  9. Chandler JM, Duncan PW, Kochersberger G, Studenski S (1998) Is lower extremity strength gain associated with improvements in physical performance and disability in frail, community-dwelling elders. Arch Phys Med Rehabil 79(1):24–30

    Article  CAS  PubMed  Google Scholar 

  10. Góes SM, Leite N, Shay BL, Homann D, Stefanello JMF, Rodacki ALF (2012) Functional capacity, muscle strength and falls in women with fibromyalgia. Clin Biomech (Bristol, Avon) 27(6):578–583. doi:10.1016/j.clinbiomech.2011.12.009

    Article  Google Scholar 

  11. Butcher SJ, Pikaluk BJ, Chura RL, Walkner MJ, Farthing JP, Marciniuk DD (2011) Associations between isokinetic muscle strength, high-level functional performance, and physiological parameters in patients with chronic obstructive pulmonary disease. Int J Chron Obstr Pulm Dis 7:537–542. doi:10.2147/COPD.S34170

    Google Scholar 

  12. Thorstensson A, Karlsson J, Viitasalo JHT, Luhtanen P, Komi PV (1976) Effect of strength training on EMG of human skeletal muscle. Acta Physiol Scand 98:232–236

    Article  CAS  PubMed  Google Scholar 

  13. Pijnappels M, Bobbert MF, van Dieën JH (2005) How early reactions in the support limb contribute to balance recovery after tripping. J Biomech 38(3):627–634

    Article  PubMed  Google Scholar 

  14. Pijnappels M, Bobbert MF, van Dieën JH (2005) Push-off reactions in recovery after tripping discriminate young subjects, older non-fallers and older fallers. Gait Posture 21(4):388–394

    Article  PubMed  Google Scholar 

  15. Thelen DG, Wojcik LA, Schultz AB, Ashton-Miller JA, Alexander NB (1997) Age differences in using a rapid step to regain balance during a forward fall. J Gerontol A Biol Sci Med Sci 52(1):M8–M13

    Article  CAS  PubMed  Google Scholar 

  16. Bento PCB, Pereira G, Urgrinowitsch C, Rodacki ALF (2010) Peak torque and rate of torque development in elderly with and without fall history. Clin Biomech (Bristol, Avon) 25(5):450–454. doi:10.1016/j.clinbiomech.2010.02.002

    Article  Google Scholar 

  17. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol (1985) 93(4):1318–1326

    Article  Google Scholar 

  18. Grabiner MD, Owings TM, Pavol MJ (2005) Lower extremity strength plays only a small role in determining the maximum recoverable lean angle in older adults. J Gerontol A Biol Sci Med Sci 60(11):1447–1450

    Article  PubMed  Google Scholar 

  19. Palmer TB, Hawkey MJ, Smith DB, Thompson BJ (2014) The influence of professional status on maximal and rapid isometric torque characteristics in elite soccer referees. J Strength Cond Res 28(5):1310–1318. doi:10.1519/JSC.0000000000000278

    Article  PubMed  Google Scholar 

  20. Thompson BJ, Ryan ED, Sobolewski EJ, Smith DB, Conchola EC, Akehi K, Buckminster T (2013) Can maximal and rapid isometric torque characteristics predict playing level in division I american collegiate football players? J Strength Cond Res 27(3):655–661. doi:10.1519/JSC.0b013e31825bb56c

    Article  PubMed  Google Scholar 

  21. Thompson BJ, Ryan ED, Herda TJ, Costa PB, Herda AA, Cramer JT (2014) Age-related changes in the rate of muscle activation and rapid force characteristics. Age (Dordr) 36(2):839–849. doi:10.1007/s11357-013-9605-0

    Article  Google Scholar 

  22. Sundstrup E, Jakobsen MD, Andersen JL, Randers MB, Petersen J, Suetta C, Aagaard P, Krustrup P (2010) Muscle function and postural balance in lifelong trained male footballers compared with sedentary elderly men and youngsters. Scand J Med Sci Sports 20(s1):90–97. doi:10.1111/j.1600-0838.2010.01092.x

    Article  PubMed  Google Scholar 

  23. LaRoche DP, Cremin KA, Greenleaf B, Croce RV (2010) Rapid torque development in older female fallers and nonfallers: a comparison across lower-extremity muscles. J Electromyogr Kinesiol 20(3):482–488. doi:10.1016/j.jelekin.2009.08.004

    Article  PubMed  Google Scholar 

  24. Skelton DA, Kennedy J, Rutherford OM (2002) Explosive power and asymmetry in leg muscle function in frequent fallers and non-fallers aged over 65. Age Ageing 31(2):119–125

    Article  PubMed  Google Scholar 

  25. Perry MC, Carville SF, Smith ICH, Rutherford OM, Newham DJ (2007) Strength, power output and symmetry of leg muscles: effect of age and history of falling. Eur J Appl Physiol 100(5):553–561

    Article  PubMed  Google Scholar 

  26. Burnfield JM, Josephson KR, Powers CM, Rubenstein LZ (2000) The influence of lower extremity joint torque on gait characteristics in elderly men. Arch Phys Med Rehabil 81(9):1153–1157

    Article  CAS  PubMed  Google Scholar 

  27. Gross MM, Stevenson PJ, Charette SL, Pyka G, Marcus R (1998) Effect of muscle strength and movement speed on the biomechanics of rising from a chair in healthy elderly and young women. Gait Posture 8(3):175–185

    Article  PubMed  Google Scholar 

  28. Iverson BD, Gossman MR, Shaddeau SA, Turner ME (1990) Balance performance, force production, and activity levels in noninstitutionalized men 60 to 90 years of age. Phys Ther 70(6):348–355

    CAS  PubMed  Google Scholar 

  29. Pijnappels M, Reeves ND, van Dieën JH (2008) Identification of elderly fallers by muscle strength measures. Eur J Appl Physiol 102(5):585–592

    Article  PubMed Central  PubMed  Google Scholar 

  30. Richardson JK, Demott T, Allet L, Kim H, Ashton-miller JA (2014) Hip strength: Ankle proprioceptive threshold ratio predicts falls and injury in diabetic neuropathy. Muscle Nerve. doi:10.1002/mus.24134 (Epub ahead of print)

    Google Scholar 

  31. Bergland A, Wyller TB (2004) Risk factors for serious fall related injury in elderly women living at home. Inj Prev 10(5):308–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Marques NR, LaRoche DP, Hallal CZ, Crozara LF, Morcelli MH, Karuka AH, Navega MT, Gonçalves M (2013) Association between energy cost of walking, muscle activation, and biomechanical parameters in older female fallers and non-fallers. Clin Biomech (Bristol, Avon). doi:10.1016/j.clinbiomech.2013.01.004 (in press)

    Google Scholar 

  33. Palmer TB, Jenkins NDM, Cramer JT (2013) Reliability of manual versus automated techniques for assessing passive stiffness of the posterior muscles of the hip and thigh. J Sports Sci 31(8):867–877

    Article  PubMed  Google Scholar 

  34. Perry J, Weiss WB, Burnfield JM, Gronley JK (2004) The supine hip extensor manual muscle test: a reliability and validity study. Arch Phys Med Rehabil 85(8):1345–1350

    Article  PubMed  Google Scholar 

  35. Zernicke RF, Smith JL (1996) Biomechanical insights into neural control of movement. In: Rowell LB, Sheaherd JT (eds) Handbook of physiology, sect 12: exercise regulation and integration of multiple systems. Oxford University Press, New York, pp 293–332

  36. Visser J, Hoogkamer J, Bobbert M, Huijing P (1990) Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol 61(5–6):453–460

    Article  CAS  Google Scholar 

  37. Oliveira FBD, Rizatto GF, Denadai BS (2013) Are early and late rate of force development differently influenced by fast-velocity resistance training? Clin Physiol Funct Imaging. doi:10.1111/cpf.12025

    Google Scholar 

  38. Tillin NA, Pain MTG, Folland J (2013) Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci 31(1):66–76. doi:10.1080/02640414.2012.720704

    Article  PubMed  Google Scholar 

  39. Holtermann A, Roeleveld K, Vereijken B, Ettema G (2007) The effect of rate of force development on maximal force production: acute and training-related aspects. Eur J Appl Physiol 99(6):605–613

    Article  PubMed  Google Scholar 

  40. Hojat M, Xu G (2004) A visitor’s guide to effect sizes: statistical significance versus practical (clinical) importance of research findings. Adv Health Sci Educ Theory Pract 9(3):241–249

    Article  PubMed  Google Scholar 

  41. Aagaard P, Magnusson PS, Larsson B, Kjoer M, Krustrup P (2007) Mechanical muscle function, morphology, and fiber type in lifelong trained elderly. Med Sci Sports Exerc 39(11):1989–1996

    Article  PubMed  Google Scholar 

  42. Dean JC, Kuo AD, Alexander NB (2004) Age-related changes in maximal hip strength and movement speed. J Gerontol A Biol Sci Med Sci 59(3):286–292

    Article  PubMed  Google Scholar 

  43. Gunter KB, White KN, Hayes WC, Snow CM (2000) Functional mobility discriminates nonfallers from one-time and frequent fallers. J Gerontol A Biol Sci Med Sci 55(11):M672–M676

    Article  CAS  PubMed  Google Scholar 

  44. Melzer I, Benjuya N, Kaplanski J (2004) Postural stability in the elderly: a comparison between fallers and non-fallers. Age Ageing 33(6):602–607

    Article  CAS  PubMed  Google Scholar 

  45. Arnold CM, Warkentin KD, Chilibeck PD, Magnus CRA (2010) The reliability and validity of handheld dynamometry for the measurement of lower-extremity muscle strength in older adults. J Strength Cond Res 24(3):815–824. doi:10.1519/JSC.0b013e3181aa36b8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

There was no funding received for this study. Study was approved by the Institutional Review Board.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brennan J. Thompson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmer, T.B., Thiele, R.M., Williams, K.B. et al. The identification of fall history using maximal and rapid isometric torque characteristics of the hip extensors in healthy, recreationally active elderly females: a preliminary investigation. Aging Clin Exp Res 27, 431–438 (2015). https://doi.org/10.1007/s40520-014-0305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-014-0305-0

Keywords

Navigation