Skip to main content

Advertisement

Log in

CAR-Tregs as a Strategy for Inducing Graft Tolerance

  • Immunology (R Fairchild, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The adoptive transfer of alloantigen-specific regulatory T cells (Tregs) following organ transplantation is an emerging treatment paradigm that may induce tolerance and reduce the risk for graft rejection. In particular, redirecting Treg specificity via expression of synthetic chimeric antigen receptors (CARs) has demonstrated therapeutic promise in several preclinical studies. In this review, we highlight recent progress and remaining barriers to the clinical translation of CAR-Treg therapies.

Recent Findings

CAR Tregs targeting human leukocyte antigen (HLA)-A2 showed antigen-specific in vitro activation and superior in vivo protective function relative to polyclonal Tregs. Adoptively transferred anti-HLA-A2 CAR Tregs prolonged the survival of HLA-A2-positive grafts in humanized mouse models.

Summary

Donor HLA molecules are attractive candidate antigens to target with CAR Tregs in transplantation due to mismatched HLA only expressed on the transplanted organ. The feasibility of this approach has been demonstrated by several independent groups in recent years. However, substantial challenges in CAR design and preclinical modeling must be more extensively addressed prior to clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Tang Q, Bluestone JA. Regulatory T-cell therapy in transplantation: moving to the clinic. Cold Spring Harb Perspect Med. 2013. https://doi.org/10.1101/cshperspect.a015552Comprehensive review about Treg therapy, the transfer into the clinic and the application in transplantation.

  2. Brennan TV, Tang Q, Liu F-C, Hoang V, Bi M, Bluestone JA, et al. Requirements for prolongation of allograft survival with regulatory T cell infusion in lymphosufficient hosts. J Surg Res. 2011;169:e69–75. https://doi.org/10.1016/j.jss.2011.03.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sagoo P, Ali N, Garg G, Nestle FO, Lechler RI, Lombardi G. Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells. Sci Transl Med. 2011;3:83ra42. https://doi.org/10.1126/scitranslmed.3002076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. • Tsang JY-S, Tanriver Y, Jiang S, Xue S-A, Ratnasothy K, Chen D, et al. Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice. J Clin Invest. 2008;118:3619–28. https://doi.org/10.1172/JCI33185First report of engineered Tregs using TCR for conferring indirect allo-reactivity in a mouse model of transplantation.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Joffre O, Santolaria T, Calise D, Al Saati T, Hudrisier D, Romagnoli P, et al. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat Med. 2008;14:88–92. https://doi.org/10.1038/nm1688.

    Article  CAS  PubMed  Google Scholar 

  6. Golshayan D, Jiang S, Tsang J, Garin MI, Mottet C, Lechler RI. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood. 2007;109:827–35. https://doi.org/10.1182/blood-2006-05-025460.

    Article  CAS  PubMed  Google Scholar 

  7. Ali JM, Bolton EM, Bradley JA, Pettigrew GJ. Allorecognition pathways in transplant rejection and tolerance. Transplantation. 2013;96:681–8. https://doi.org/10.1097/TP.0b013e31829853ce.

    Article  CAS  PubMed  Google Scholar 

  8. • Siu JHY, Surendrakumar V, Richards JA, Pettigrew GJ. T cell Allorecognition pathways in solid organ transplantation. Front Immunol. 2018;9:2548. https://doi.org/10.3389/fimmu.2018.02548This review provides an extensive overview on allorecognition and rejection in organ transplantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu Q, Rojas-Canales DM, Divito SJ, Shufesky WJ, Stolz DB, Erdos G, et al. Donor dendritic cell-derived exosomes promote allograft-targeting immune response. J Clin Invest. 2016;126:2805–20. https://doi.org/10.1172/JCI84577.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marino J, Babiker-Mohamed MH, Crosby-Bertorini P, Paster JT, LeGuern C, Germana S, et al. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci Immunol. 2016;1. https://doi.org/10.1126/sciimmunol.aaf8759.

  11. Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol. 2008;9:239–44. https://doi.org/10.1038/ni1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee K, Nguyen V, Lee K-M, Kang S-M, Tang Q. Attenuation of donor-reactive T cells allows effective control of allograft rejection using regulatory T cell therapy. Am J Transplant. 2014;14:27–38. https://doi.org/10.1111/ajt.12509.

    Article  CAS  PubMed  Google Scholar 

  13. • Tang Q, Lee K. Regulatory T-cell therapy for transplantation: how many cells do we need? Curr Opin Organ Transplant. 2012;17:349–54. https://doi.org/10.1097/MOT.0b013e328355a992Quantitative estimate of the effective dose of Tregs for controlling transplant rejection in humans.

    Article  CAS  PubMed  Google Scholar 

  14. Romano M, Fanelli G, Albany CJ, Giganti G, Lombardi G. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front Immunol. 2019;10:43. https://doi.org/10.3389/fimmu.2019.00043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suchin EJ, Langmuir PB, Palmer E, Sayegh MH, Wells AD, Turka LA. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol. 2001;166:973–81. https://doi.org/10.4049/jimmunol.166.2.973.

    Article  CAS  PubMed  Google Scholar 

  16. Veerapathran A, Pidala J, Beato F, Yu X-Z, Anasetti C. Ex vivo expansion of human Tregs specific for alloantigens presented directly or indirectly. Blood. 2011;118:5671–80. https://doi.org/10.1182/blood-2011-02-337097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Juvet SC, Sanderson S, Hester J, Wood KJ, Bushell A. Quantification of CD4(+) T cell alloreactivity and its control by regulatory T cells using time-lapse microscopy and immune synapse detection. Am J Transplant. 2016;16:1394–407. https://doi.org/10.1111/ajt.13607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang Q, Vincenti F. Transplant trials with Tregs: perils and promises. J Clin Invest. 2017;127:2505–12. https://doi.org/10.1172/JCI90598.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Landwehr-Kenzel S, Issa F, Luu S-H, Schmück M, Lei H, Zobel A, et al. Novel GMP-compatible protocol employing an allogeneic B cell bank for clonal expansion of allospecific natural regulatory T cells. Am J Transplant. 2014;14:594–606. https://doi.org/10.1111/ajt.12629.

    Article  CAS  PubMed  Google Scholar 

  20. Irving BA, Weiss A. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 1991;64:891–901. https://doi.org/10.1016/0092-8674(91)90314-O.

    Article  CAS  PubMed  Google Scholar 

  21. Roselli E, Frieling JS, Thorner K, Ramello MC, Lynch CC, Abate-Daga D. CAR-T engineering: optimizing signal transduction and effector mechanisms. BioDrugs. 2019;33:647–59. https://doi.org/10.1007/s40259-019-00384-z.

    Article  CAS  PubMed  Google Scholar 

  22. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121:1822–6. https://doi.org/10.1172/JCI46110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol. 2002;20:70–5. https://doi.org/10.1038/nbt0102-70.

    Article  CAS  PubMed  Google Scholar 

  24. Imai C, Mihara K, Andreansky M, Nicholson IC, Pui C-H, Geiger TL, et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004;18:676–84. https://doi.org/10.1038/sj.leu.2403302.

    Article  CAS  PubMed  Google Scholar 

  25. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A. 2009;106:3360–5. https://doi.org/10.1073/pnas.0813101106.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pulè MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther. 2005;12:933–41. https://doi.org/10.1016/j.ymthe.2005.04.016.

    Article  CAS  PubMed  Google Scholar 

  27. Guedan S, Posey AD, Shaw C, Wing A, Da T, Patel PR, et al. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight. 2018;3. https://doi.org/10.1172/jci.insight.96976.

  28. Abate-Daga D, Lagisetty KH, Tran E, Zheng Z, Gattinoni L, Yu Z, et al. A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer. Hum Gene Ther. 2014;25:1003–12. https://doi.org/10.1089/hum.2013.209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holzinger A, Abken H. CAR T cells: a snapshot on the growing options to design a CAR. Hemasphere. 2019;3:e172. https://doi.org/10.1097/HS9.0000000000000172.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tokarew N, Ogonek J, Endres S, Bergwelt-Baildon MV, Kobold S. Teaching an old dog new tricks: next-generation CAR T cells. Br J Cancer. 2019;120:26–37. https://doi.org/10.1038/s41416-018-0325-1.

    Article  CAS  PubMed  Google Scholar 

  31. Chmielewski M, Kopecky C, Hombach AA, Abken H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res. 2011;71:5697–706. https://doi.org/10.1158/0008-5472.CAN-11-0103.

    Article  CAS  PubMed  Google Scholar 

  32. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3:95ra73. https://doi.org/10.1126/scitranslmed.3002842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Elinav E, Waks T, Eshhar Z. Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology. 2008;134:2014–24. https://doi.org/10.1053/j.gastro.2008.02.060This study is the first report of CAR Tregs and their funtion in a mouse model of colitis.

    Article  PubMed  Google Scholar 

  34. Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z. Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol Ther. 2014;22:1018–28. https://doi.org/10.1038/mt.2014.41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. • Fransson M, Piras E, Burman J, Nilsson B, Essand M, Lu B, et al. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation. 2012;9:112. https://doi.org/10.1186/1742-2094-9-112This study shows a successful application of CAR Tregs to decrease disease severity in EAE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. González-Galarza FF, Takeshita LYC, Santos EJM, Kempson F, Maia MHT, da Silva ALS, et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 2015;43:D784–8. https://doi.org/10.1093/nar/gku1166.

    Article  CAS  PubMed  Google Scholar 

  37. •• MacDonald KG, Hoeppli RE, Huang Q, Gillies J, Luciani DS, Orban PC, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest. 2016;126:1413–24. https://doi.org/10.1172/JCI82771Seminal study and first report of anti-HLA-A2 CAR human Tregs.

    Article  PubMed  PubMed Central  Google Scholar 

  38. •• Boardman DA, Philippeos C, Fruhwirth GO, Ibrahim MAA, Hannen RF, Cooper D, et al. Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am J Transplant. 2017;17:931–43. https://doi.org/10.1111/ajt.14185Seminal study using anti-HLA-A2 CAR human Tregs to prevent alloimmune-mediated human skin rejection in a humanized mouse model.

    Article  CAS  PubMed  Google Scholar 

  39. •• Noyan F, Zimmermann K, Hardtke-Wolenski M, Knoefel A, Schulde E, Geffers R, et al. Prevention of allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor. Am J Transplant. 2017;17:917–30. https://doi.org/10.1111/ajt.14175Seminal study showing a superior protective effect of anti-HLA-A2 CAR human Tregs in a humanized mouse model of allogeneic human skin transplantation.

    Article  CAS  PubMed  Google Scholar 

  40. •• Dawson NA, Lamarche C, Hoeppli RE, Bergqvist P, Fung VC, McIver E, et al. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.123672Seminal study testing different anti-HLA-A2 human CARs for cross-reactivity and in vivo functionality in humanized mouse models.

  41. •• Bézie S, Charreau B, Vimond N, Lasselin J, Gérard N, Nerrière-Daguin V, et al. Human CD8+ Tregs expressing a MHC-specific CAR display enhanced suppression of human skin rejection and GVHD in NSG mice. Blood Adv. 2019;3:3522–38. https://doi.org/10.1182/bloodadvances.2019000411Seminal study using anti-HLA-A2-CAR CD8+ human Tregs to decrease the risk for xenogenic GvHD and human skin transplant rejection in a humanized mouse model.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Koristka S, Kegler A, Bergmann R, Arndt C, Feldmann A, Albert S, et al. Engrafting human regulatory T cells with a flexible modular chimeric antigen receptor technology. J Autoimmun. 2018;90:116–31. https://doi.org/10.1016/j.jaut.2018.02.006.

    Article  CAS  PubMed  Google Scholar 

  43. Boroughs AC, Larson RC, Choi BD, Bouffard AA, Riley LS, Schiferle E, et al. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function. JCI Insight. 2019;4. https://doi.org/10.1172/jci.insight.126194.

  44. Dawson NAJ, Rosado-Sánchez I, Novakovsky GE, Fung VCW, Huang Q, McIver E, et al. Functional effects of chimeric antigen receptor co-receptor signaling domains in human Tregs. bioRxiv. 2019:749721. https://doi.org/10.1101/749721.

  45. •• Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov. 2019;18:749–69. https://doi.org/10.1038/s41573-019-0041-4Comprehensive review of current Treg therapy and the future directions in autoimmunity and transplantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117:1061–70. https://doi.org/10.1182/blood-2010-07-293795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Esensten JH, Muller YD, Bluestone JA, Tang Q. Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: the next frontier. J Allergy Clin Immunol. 2018;142:1710–8. https://doi.org/10.1016/j.jaci.2018.10.015.

    Article  CAS  PubMed  Google Scholar 

  48. Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7:315ra189. https://doi.org/10.1126/scitranslmed.aad4134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of Treg-mediated T cell suppression. Front Immunol. 2012;3. https://doi.org/10.3389/fimmu.2012.00051.

  50. Barbi J, Pardoll DM, Pan F. Treg functional stability and its responsiveness to the microenvironment. Immunol Rev. 2014;259:115–39. https://doi.org/10.1111/imr.12172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6. https://doi.org/10.1038/ni904.

    Article  CAS  PubMed  Google Scholar 

  52. Khattri R, Cox T, Yasayko S-A, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003;4:337–42. https://doi.org/10.1038/ni909.

    Article  CAS  PubMed  Google Scholar 

  53. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61. https://doi.org/10.1126/science.1079490.

    Article  CAS  PubMed  Google Scholar 

  54. Kitagawa Y, Ohkura N, Sakaguchi S. Molecular determinants of regulatory T cell development: the essential roles of epigenetic changes. Front Immunol. 2013;4. https://doi.org/10.3389/fimmu.2013.00106.

  55. Hoffmann P, Boeld TJ, Eder R, Huehn J, Floess S, Wieczorek G, et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur J Immunol. 2009;39:1088–97. https://doi.org/10.1002/eji.200838904.

    Article  CAS  PubMed  Google Scholar 

  56. Hippen KL, Merkel SC, Schirm DK, Sieben CM, Sumstad D, Kadidlo DM, et al. Massive ex vivo expansion of human natural regulatory T cells (T(regs)) with minimal loss of in vivo functional activity. Sci Transl Med. 2011;3:83ra41. https://doi.org/10.1126/scitranslmed.3001809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dijke IE, Hoeppli RE, Ellis T, Pearcey J, Huang Q, McMurchy AN, et al. Discarded human thymus is a novel source of stable and long-lived therapeutic regulatory T cells. Am J Transplant. 2016;16:58–71. https://doi.org/10.1111/ajt.13456.

    Article  CAS  PubMed  Google Scholar 

  58. Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, Punt J, et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med. 2011;208:1279–89. https://doi.org/10.1084/jem.20110308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zikherman J, Parameswaran R, Weiss A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature. 2012;489:160–4. https://doi.org/10.1038/nature11311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tang Q, Henriksen KJ, Boden EK, Tooley AJ, Ye J, Subudhi SK, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol. 2003;171:3348–52. https://doi.org/10.4049/jimmunol.171.7.3348.

    Article  CAS  PubMed  Google Scholar 

  61. Fisson S, Darrasse-Jèze G, Litvinova E, Septier F, Klatzmann D, Liblau R, et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J Exp Med. 2003;198:737–46. https://doi.org/10.1084/jem.20030686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thome JJC, Bickham KL, Ohmura Y, Kubota M, Matsuoka N, Gordon C, et al. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat Med. 2016;22:72–7. https://doi.org/10.1038/nm.4008.

    Article  CAS  PubMed  Google Scholar 

  63. Zhou X, Bailey-Bucktrout S, Jeker LT, Bluestone JA. Plasticity of CD4(+) FoxP3(+) T cells. Curr Opin Immunol. 2009;21:281–5. https://doi.org/10.1016/j.coi.2009.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chaudhry A, Rudensky AY. Control of inflammation by integration of environmental cues by regulatory T cells. J Clin Invest. 2013;123:939–44. https://doi.org/10.1172/JCI57175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Walsh NC, Kenney LL, Jangalwe S, Aryee K-E, Greiner DL, Brehm MA, et al. Humanized mouse models of clinical disease. Annu Rev Pathol. 2017;12:187–215. https://doi.org/10.1146/annurev-pathol-052016-100332.

    Article  CAS  PubMed  Google Scholar 

  66. Collins MK. Species specificity of interleukin 2 binding to individual receptor components. Eur J Immunol. 1989;19:1517–20. https://doi.org/10.1002/eji.1830190828.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhi Tang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Immunology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, J.C., Tang, Q. CAR-Tregs as a Strategy for Inducing Graft Tolerance. Curr Transpl Rep 7, 205–214 (2020). https://doi.org/10.1007/s40472-020-00285-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-020-00285-z

Keywords

Navigation