Skip to main content
Log in

Fifty Shades of Transplantation Tolerance: Beyond a Binary Tolerant/Non-Tolerant Paradigm

  • Immunology (R Fairchild, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

It has long been considered that tolerance in a transplant recipient is a binary all-or-none state: either the graft is accepted without immunosuppression identifying the recipient as tolerant, or the recipient rejects the graft and is not tolerant. This tolerance paradigm, however, does not accurately reflect data emerging from animal models and patients and requires revision.

Recent Findings

It is becoming appreciated that there may be different gradations in the quality of transplantation tolerance based on underlying cellular mechanisms of immunological tolerance, and that individuals may enhance the robustness of their state of transplant tolerance by strengthening or combining different cellular mechanisms. Furthermore, evidence suggests that even if tolerance is lost, the loss may be only temporary, and in some circumstances, tolerance can be restored.

Summary

Shifting our focus from an all-or-nothing tolerance paradigm to one with many shades may help us better understand how tolerance operates, and how this state may be tracked and enhanced for better patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wiebe C, Gibson IW, Blydt-Hansen TD, et al. Rates and determinants of progression to graft failure in kidney allograft recipients with de novo donor-specific antibody. Am J Transplant. 2015;15:2921–30. https://doi.org/10.1111/ajt.13347.

    Article  CAS  PubMed  Google Scholar 

  2. de Vries VC, Wasiuk A, Bennett KA, et al. Mast cell degranulation breaks peripheral tolerance. Am J Transplant. 2009;9:2270–80. https://doi.org/10.1111/j.1600-6143.2009.02755.x.

    Article  PubMed  Google Scholar 

  3. • Miller ML, Daniels MD, Wang T, et al. Tracking of TCR-Tg T cells reveals multiple mechanisms maintain cardiac transplant tolerance in mice. Am J Transplant. 2016; https://doi.org/10.1111/ajt.13814. Study showing that robust tolerance is maintained by multiple additive/redundant cellular tolerance mechanisms.

  4. Iida S, Suzuki T, Tanabe K, et al. Transient lymphopenia breaks costimulatory blockade-based peripheral tolerance and initiates cardiac allograft rejection. Am J Transplant. 2013;13:2268–79. https://doi.org/10.1111/ajt.12342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang L, Chen X, Liu X, et al. CD40 ligation reverses T cell tolerance in acute myeloid leukemia. J Clin Investig. 2013;123:1999–2010. https://doi.org/10.1172/JCI63980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ali JM, Negus MC, Conlon TM, et al. Diversity of the CD4 T cell alloresponse: the short and the long of it. Cell Rep. 2016;14:1232–45. https://doi.org/10.1016/j.celrep.2015.12.099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang T, Ahmed EB, Chen L, et al. Infection with the intracellular bacterium, Listeria monocytogenes, overrides established tolerance in a mouse cardiac allograft model. Am J Transplant. 2010;10:1524–33. https://doi.org/10.1111/j.1600-6143.2010.03066.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang T, Chen L, Ahmed EM, et al. Prevention of allograft tolerance by bacterial infection with Listeria monocytogenes. J Immunol. 2008;180:5991–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmed EB, Wang T, Daniels M, et al. IL-6 induced by Staphylococcus aureus infection prevents the induction of skin allograft acceptance in mice. Am J Transplant. 2011;11:936–46. https://doi.org/10.1111/j.1600-6143.2011.03476.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Welsh RM, Markees TG, Woda BA, et al. Virus-induced abrogation of transplantation tolerance induced by donor-specific transfusion and anti-CD154 antibody. J Virol. 2000;74:2210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. •• Young JS, Daniels MD, Miller ML, et al. Erosion of transplantation tolerance after infection. Am J Transplant. 2017;17:81–90. https://doi.org/10.1111/ajt.13910. A study showing that a severe infection can erode transplantation tolerance long-term even in animals in which it does not cause graft loss.

    Article  CAS  PubMed  Google Scholar 

  12. •• Miller ML, Daniels MD, Wang T, et al. Spontaneous restoration of transplantation tolerance after acute rejection. Nat Commun. 2015;6:7566. https://doi.org/10.1038/ncomms8566. A study showing that the memory of tolerance can dominate over the memory of transplant rejection triggered by an infection, albeit the restored tolerance is eroded when compared to the robust tolerance prior to infection .

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jiang X, Sun W, Guo D, et al. Cardiac allograft acceptance induced by blockade of CD40-CD40L costimulation is dependent on CD4+CD25+ regulatory T cells. Surgery. 2011;149:336–46. https://doi.org/10.1016/j.surg.2010.08.012.

    Article  PubMed  Google Scholar 

  14. Qin S, Cobbold SP, Pope H, et al. “Infectious” transplantation tolerance. Science. 1993;259:974–7.

    Article  CAS  PubMed  Google Scholar 

  15. Kendal AR, Chen Y, Regateiro FS, et al. Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance. J Exp Med. 2011;208:2043–53. https://doi.org/10.1084/jem.20110767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Graca L, Thompson S, Lin C-Y, et al. Both CD4+CD25+ and CD4+CD25− regulatory cells mediate dominant transplantation tolerance. J Immunol. 2002;168:5558–65. https://doi.org/10.4049/jimmunol.168.11.5558.

    Article  CAS  PubMed  Google Scholar 

  17. Schroeder G, Risch K, Kotsch K, et al. FTY720 prevents anti-CD4 mAb-induced tolerance but cannot reverse established tolerance in a rat kidney transplantation model. Am J Transplant. 2004;4:863–71. https://doi.org/10.1111/j.1600-6143.2004.00442.x.

    Article  CAS  PubMed  Google Scholar 

  18. Scalea JR, Okumi M, Villani V, et al. Abrogation of renal allograft tolerance in MGH miniature swine: the role of intra-graft and pripheral factors in long-term tolerance. Am J Transplant. 2014;14:2001–10. https://doi.org/10.1111/ajt.12816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bigenzahn S, Blaha P, Koporc Z, et al. The role of non-deletional tolerance mechanisms in a murine model of mixed chimerism with costimulation blockade. Am J Transplant. 2005;5:1237–47.

    Article  CAS  PubMed  Google Scholar 

  20. Besançon A, Baas M, Goncalves T, et al. The induction and maintenance of transplant tolerance engages both regulatory and anergic CD4(+) T cells. Front Immunol. 2017;8:218. https://doi.org/10.3389/fimmu.2017.00218.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Baas M, Besançon A, Goncalves T, et al. TGFβ-dependent expression of PD-1 and PD-L1 controls CD8(+) T cell anergy in transplant tolerance. elife. 2016; https://doi.org/10.7554/eLife.08133.

  22. Tanaka K, Albin MJ, Yuan X, et al. PDL1 is required for peripheral transplantation tolerance and protection from chronic allograft rejection. J Immunol. 2007;179:5204–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koehn BH, Ford ML, Ferrer IR, et al. PD-1-dependent mechanisms maintain peripheral tolerance of donor-reactive CD8+ T cells to transplanted tissue. J Immunol. 2008;181:5313–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miyajima M, Chase CM, Alessandrini A, et al. Early acceptance of renal allografts in mice is dependent on foxp3(+) cells. Am J Pathol. 2011;178:1635–45. https://doi.org/10.1016/j.ajpath.2010.12.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. • Yamada Y, Nadazdin O, Boskovic S, et al. Repeated injections of IL-2 break renal allograft tolerance induced via mixed hematopoietic chimerism in monkeys. Am J Transplant. 2015;15:3055–66. https://doi.org/10.1111/ajt.13382. The authors provide evidence of breaking of transplantation tolerance in non-human primates, and of its spontaneous restoration following cessation of IL-2 administration .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leventhal J, Abecassis M, Miller J, et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci Transl Med. 2012;4:124ra28. https://doi.org/10.1126/scitranslmed.3003509.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kawai T, Cosimi AB, Spitzer TR, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 2008;358:353–61. https://doi.org/10.1056/NEJMoa071074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scandling JD, Busque S, Dejbakhsh-Jones S, et al. Tolerance and chimerism after renal and hematopoietic-cell transplantation. N Engl J Med. 2008;358:362–8. https://doi.org/10.1056/NEJMoa074191.

    Article  CAS  PubMed  Google Scholar 

  29. Morris H, DeWolf S, Robins H, et al. Tracking donor-reactive T cells: evidence for clonal deletion in tolerant kidney transplant patients. Sci Transl Med. 2015;7:272ra10. https://doi.org/10.1126/scitranslmed.3010760.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Haspot F, Fehr T, Gibbons C, et al. Peripheral deletional tolerance of alloreactive CD8 but not CD4 T cells is dependent on the PD-1/PD-L1 pathway. Blood. 2008;112:2149–55. https://doi.org/10.1182/blood-2007-12-127449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kawai T, Sachs DH, Sprangers B, et al. Long-term results in recipients of combined HLA-mismatched kidney and bone marrow transplantation without maintenance immunosuppression. Am J Transplant. 2014;14:1599–611. https://doi.org/10.1111/ajt.12731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Massart A, Pallier A, Pascual J, et al. The DESCARTES-Nantes survey of kidney transplant recipients displaying clinical operational tolerance identifies 35 new tolerant patients and 34 almost tolerant patients. Nephrol Dial Transplant. 2016;31:1002–13. https://doi.org/10.1093/ndt/gfv437.

    Article  PubMed  Google Scholar 

  33. Sagoo P, Perucha E, Sawitzki B, et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J Clin Invest. 2010;120:1848–61. https://doi.org/10.1172/JCI39922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Newell KA, Asare A, Kirk AD, et al. Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest. 2010;120:1836–47. https://doi.org/10.1172/JCI39933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chenouard A, Chesneau M, Bui Nguyen L, et al. Renal operational tolerance is associated with a defect of blood Tfh cells that exhibit impaired B cell help. Am J Transplant. 2016; https://doi.org/10.1111/ajt.14142.

  36. Braza F, Dugast E, Panov I, et al. Central role of CD45RA- Foxp3hi memory regulatory T cells in clinical kidney transplantation tolerance. J Am Soc Nephrol. 2015;26:1795–805. https://doi.org/10.1681/ASN.2014050480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Asare A, Kanaparthi S, Lim N, et al. B Cell receptor genes associated with tolerance identify a cohort of immunosuppressed patients with improved renal allograft graft function. Am J Transplant. 2017; https://doi.org/10.1111/ajt.14283.

  38. Rebollo-Mesa I, Nova-Lamperti E, Mobillo P, et al. Biomarkers of tolerance in kidney transplantation: are we predicting tolerance or response to immunosuppressive treatment? Am J Transplant. 2016;16:3443–57. https://doi.org/10.1111/ajt.13932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bottomley MJ, Chen M, Fuggle S, et al. Application of operational tolerance signatures are limited by variability and type of immunosuppression in renal transplant recipients: a cross-sectional study. Transplant Direct. 2017;3:e125. https://doi.org/10.1097/TXD.0000000000000638.

    Article  PubMed  Google Scholar 

  40. Bohne F, Martínez-Llordella M, Lozano J-J, et al. Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation. J Clin Invest. 2012;122:368–82. https://doi.org/10.1172/JCI59411.

    Article  CAS  PubMed  Google Scholar 

  41. • Benítez C, Londoño M-C, Miquel R, et al. Prospective multicenter clinical trial of immunosuppressive drug withdrawal in stable adult liver transplant recipients. Hepatology. 2013;58:1824–35. https://doi.org/10.1002/hep.26426. In one of the first studies to prospectively wean patients from immunosuppression, the authors find that episodes of acute rejection do not preclude tolerance from later developing.

    Article  PubMed  Google Scholar 

  42. •• Brouard S, Pallier A, Renaudin K, et al. The natural history of clinical operational tolerance after kidney transplantation through twenty-seven cases. Am J Transplant. 2012;12:3296–307. https://doi.org/10.1111/j.1600-6143.2012.04249.x. This study provides evidence that spontaneous tolerance in human patients is not always permanent.

    Article  CAS  PubMed  Google Scholar 

  43. Tryphonopoulos P, Ruiz P, Weppler D, et al. Long-term follow-up of 23 operational tolerant liver transplant recipients. Transplantation. 2010;90:1556–61. https://doi.org/10.1097/TP.0b013e3182003db7.

    Article  PubMed  Google Scholar 

  44. Mazariegos GV, Sindhi R, Thomson AW, Marcos A. Clinical tolerance following liver transplantation: long term results and future prospects. Transpl Immunol. 2007;17:114–9. https://doi.org/10.1016/j.trim.2006.09.033.

    Article  PubMed  Google Scholar 

  45. Barbi J, Pardoll D, Pan F. Treg functional stability and its responsiveness to the microenvironment. Immunol Rev. 2014;259:115–39. https://doi.org/10.1111/imr.12172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science. 2003;299:1033–6.

    Article  CAS  PubMed  Google Scholar 

  47. Nish SA, Schenten D, Wunderlich FT, et al. T cell-intrinsic role of IL-6 signaling in primary and memory responses. elife. 2014;3:e01949. https://doi.org/10.7554/eLife.01949.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brown IE, Blank C, Kline J, et al. Homeostatic proliferation as an isolated variable reverses CD8+ T cell anergy and promotes tumor rejection. J Immunol. 2006;177:4521–9.

    Article  CAS  PubMed  Google Scholar 

  49. • Schietinger A, Delrow JJ, Basom RS, et al. Rescued tolerant CD8 T cells are preprogrammed to reestablish the tolerant state. Science. 2012;335:723–7. https://doi.org/10.1126/science.1214277. In this work, the authors identify an epigenetically-programmed T cell-intrinsic tolerant state that can be reversed and later spontaneously restored.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chackerian B, Durfee MR, Schiller JT. Virus-like display of a neo-self antigen reverses B cell anergy in a B cell receptor transgenic mouse model. J Immunol. 2008;180:5816–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ardolino M, Azimi CS, Iannello A, et al. Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J Clin Invest. 2014;124:4781–94. https://doi.org/10.1172/JCI74337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Farkas AM, Finn OJ. Novel mechanisms underlying the immediate and transient global tolerization of splenic dendritic cells after vaccination with a self-antigen. J Immunol. 2014;192:658–65. https://doi.org/10.4049/jimmunol.1301904.

    Article  CAS  PubMed  Google Scholar 

  53. Farkas AM, Marvel DM, Finn OJ. Antigen choice determines vaccine-induced generation of immunogenic versus tolerogenic DC that are marked by differential expression of pancreatic enzymes. J Immunol. 2013;190:3319–27. https://doi.org/10.4049/jimmunol.1203321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang Y, Huang C-T, Huang X, Pardoll DM. Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol. 2004;5:508–15. https://doi.org/10.1038/ni1059.

    Article  CAS  PubMed  Google Scholar 

  55. Horkheimer I, Quigley M, Zhu J, et al. Induction of type I IFN is required for overcoming tumor-specific T-cell tolerance after stem cell transplantation. Blood. 2009;113:5330–9. https://doi.org/10.1182/blood-2008-05-155150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. • Legoux FP, Lim J-B, Cauley AW, et al. CD4(+) T Cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity. 2015;43:896–908. https://doi.org/10.1016/j.immuni.2015.10.011. Demonstration that self-tolerance is also functionally graded in its robustness based on the mechanism of tolerance .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Malhotra D, Linehan JL, Dileepan T, et al. Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nat Immunol. 2016;17:187–95. https://doi.org/10.1038/ni.3327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goding SR, Wilson KA, Xie Y, et al. Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol. 2013;190:4899–909. https://doi.org/10.4049/jimmunol.1300271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wood LM, Paterson Y. Attenuated Listeria monocytogenes: a powerful and versatile vector for the future of tumor immunotherapy. Front Cell Infect Microbiol. 2014;4:51. https://doi.org/10.3389/fcimb.2014.00051.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

M.L.M. was funded by American Heart Association predoctoral fellowships (13PRE14550022 and 15PRE22180007), a Cardiovascular Pathophysiology and Biochemistry Training Grant (T32 HL07237), and a Howard Hughes Medical Institute Med-into-Grad Program training grant (56006772). The work was also supported by National Institutes of Health P01AI-97113 to A.S.C. and M.-L.A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anita S. Chong or Maria-Luisa Alegre.

Ethics declarations

Conflict of Interest

Anita Chong and Maria-Luisa declare grants from the National Institutes of Health during the conduct of this study.

Michelle Miller reports grants from National Institutes of Health, the American Heart Association, and the Howard Hughes Medical Institute during the conduct of the study.

Human and Animal Rights and Informed Consent

Reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Immunology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, M.L., Chong, A.S. & Alegre, ML. Fifty Shades of Transplantation Tolerance: Beyond a Binary Tolerant/Non-Tolerant Paradigm. Curr Transpl Rep 4, 262–269 (2017). https://doi.org/10.1007/s40472-017-0166-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-017-0166-5

Keywords

Navigation