Skip to main content
Log in

Missingness in the Setting of Competing Risks: from Missing Values to Missing Potential Outcomes

  • Epidemiologic Methods (R Maclehose, Section Editor)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The setting of competing risks in which there is an event that precludes the event of interest from occurring is prevalent in epidemiological research. Unless studying all-cause mortality, any study following up individuals is subject to having a competing risk should individuals die during time period that the study covers. While there are prior papers discussing the need for competing risk methods in epidemiologic research, we are not aware of any review that discusses issues of missing data in a competing risk setting.

Recent Findings

We provide an overview of causal inference in competing risks as potential outcomes are missing, provide some strategies in dealing with missing (or misclassified) event type, and missing covariate data in competing risks. The strategies presented are specifically focused on those that may easily be implemented in standard statistical packages. There is ongoing work in terms of causal analyses, dealing with missing event type information, and missing covariate values specific to competing risk analyses.

Summary

Competing events are common in epidemiologic research. While there has been a focus on why one should conduct a proper competing risk analysis, a perhaps unrecognized issue is in terms of missingness. Strategies exist to minimize the impact of missingness in analyses of competing risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Cole SR, Lau B, Eron JJ, Brookhart MA, Kitahata MM, Martin JN, et al. Estimation of the standardized risk difference and ratio in a competing risks framework: application to injection drug use and progression to AIDS after initiation of antiretroviral therapy. Am J Epidemiol. 2015;181:238–45.

    Article  PubMed  Google Scholar 

  2. Schumacher M, Ohneberg K, Beyersmann J. Competing risk bias was common in a prominent medical journal. J Clin Epidemiol. 2016;80:135–6.

    Article  PubMed  Google Scholar 

  3. van Walraven C, McAlister FA. Competing risk bias was common in Kaplan-Meier risk estimates published in prominent medical journals. J Clin Epidemiol. 2016;69:170–173.e8.

    Article  PubMed  Google Scholar 

  4. Koller MT, Raatz H, Steyerberg EW, Wolbers M. Competing risks and the clinical community: irrelevance or ignorance? Stat Med. 2012;31:1089–97.

    Article  PubMed  Google Scholar 

  5. Austin PC, Fine JP. Accounting for competing risks in randomized controlled trials: a review and recommendations for improvement. Stat Med. 2017;36:1203–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Holland PW. Statistics and causal inference. J Am Stat Assoc. 1986;81:945–60.

    Article  Google Scholar 

  7. Westreich D, Edwards JK, Cole SR, Platt RW, Mumford SL, Schisterman EF. Imputation approaches for potential outcomes in causal inference. Int J Epidemiol. 2015;44:1731–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. White IR, Royston P. Imputing missing covariate values for the Cox model. Stat Med. 2009;28:1982–98.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bartlett JW, Seaman SR, White IR, Carpenter JR, Alzheimer’s Disease Neuroimaging Initiative*. Multiple imputation of covariates by fully conditional specification: accommodating the substantive model. Stat Methods Med Res. 2015;24:462–87.

    Article  PubMed  PubMed Central  Google Scholar 

  10. • Bartlett JW, Taylor JMG. Missing covariates in competing risks analysis. Biostatistics. 2016;17:751–63. This paper provides details on imputing covariates in a manner that is compatible with outcome model. Reference 9 provides context for understanding this paper.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lau B, Cole SR, Gange SJ. Competing risk regression models for epidemiologic data. Am J Epidemiol. 2009;170:244–56.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Allignol A, Schumacher M, Wanner C, Drechsler C, Beyersmann J. Understanding competing risks: a simulation point of view. BMC Med Res Methodol. 2011;11:86.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Andersen PK, Geskus RB, de Witte T, Putter H. Competing risks in epidemiology: possibilities and pitfalls. Int J Epidemiol. 2012;41:861–70.

    Article  PubMed  PubMed Central  Google Scholar 

  14. •• Austin PC, Fine JP. Practical recommendations for reporting fine-gray model analyses for competing risk data. Stat Med. 2017;36:4391–400. This review provides further view on how to interpret competing risk estimands as well as recommendations for reporting analyses.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Prentice RL, Kalbfleisch JD, Peterson AV, Flournoy N, Farewell VT, Breslow NE. The analysis of failure times in the presence of competing risks. Biometrics. 1978;34:541–54.

    Article  PubMed  CAS  Google Scholar 

  16. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.

    Article  Google Scholar 

  17. • Latouche A, Allignol A, Beyersmann J, Labopin M, Fine JP. A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions. J. Clin. Epidemiol. 2013;66:648–53. This study provides recommendations on reporting competing risk analyses.

    Article  PubMed  Google Scholar 

  18. Andersen PK. Decomposition of number of life years lost according to causes of death. Stat Med. 2013;32:5278–85.

    Article  PubMed  CAS  Google Scholar 

  19. Cole SR, Hernán MA. Adjusted survival curves with inverse probability weights. Comput Methods Prog Biomed. 2004;75:45–9.

    Article  Google Scholar 

  20. Xie J, Liu C. Adjusted Kaplan-Meier estimator and log-rank test with inverse probability of treatment weighting for survival data. Stat Med. 2005;24:3089–110.

    Article  PubMed  Google Scholar 

  21. Cole SR, Frangakis CE. The consistency statement in causal inference: a definition or an assumption? Epidemiology. 2009;20:3–5.

    Article  PubMed  Google Scholar 

  22. VanderWeele TJ. Concerning the consistency assumption in causal inference. Epidemiology. 2009;20:880–3.

    Article  PubMed  Google Scholar 

  23. VanderWeele TJ, Hernán MA. Causal inference under multiple versions of treatment. J Causal Inference. 2013;1:1–20.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maldonado G, Greenland S. Estimating causal effects. Int J Epidemiol. 2002;31:422–9.

    Article  PubMed  Google Scholar 

  25. Hernán MA. A definition of causal effect for epidemiological research. J Epidemiol Community Health. 2004;58:265–71.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hernán MA, Robins JM. Estimating causal effects from epidemiological data. J Epidemiol Community Health. 2006;60:578–86.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bekaert M, Vansteelandt S, Mertens K. Adjusting for time-varying confounding in the subdistribution analysis of a competing risk. Lifetime Data Anal. 2010;16:45–70.

    Article  PubMed  Google Scholar 

  28. Cole SR, Hudgens MG, Brookhart MA, Westreich D. Risk. Am J Epidemiol. 2015;181:246–50.

    Article  PubMed  PubMed Central  Google Scholar 

  29. • Lesko CR, Lau B. Bias due to confounders for the exposure-competing risk relationship. Epidemiol. 2017;28:20–7. First paper to illustrate that in a causal analysis, there is bias when not controlling for confounders of the exposure and competing event.

    Article  Google Scholar 

  30. Edwards JK, Cole SR, Westreich D. All your data are always missing: incorporating bias due to measurement error into the potential outcomes framework. Int J Epidemiol. 2015;44:1452–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10:37–48.

    Article  PubMed  CAS  Google Scholar 

  32. Hernán MA, Schisterman EF, Hernández-Díaz S. Invited commentary: composite outcomes as an attempt to escape from selection bias and related paradoxes. Am J Epidemiol. 2014;179:368–70.

    Article  PubMed  Google Scholar 

  33. Kramer MS, Zhang X, Platt RW. Kramer et al. respond to “composite outcomes and paradoxes”. Am J Epidemiol. 2014;179:371–2.

    Article  PubMed  Google Scholar 

  34. Rubin DB. Inference and missing data. Biometrika. 1976;63:581–92.

    Article  Google Scholar 

  35. Edwards JK, Cole SR, Chu H, Olshan AF, Richardson DB. Accounting for outcome misclassification in estimates of the effect of occupational asbestos exposure on lung cancer death. Am J Epidemiol. 2014;179:641–7.

    Article  PubMed  Google Scholar 

  36. Grambauer N, Schumacher M, Dettenkofer M, Beyersmann J. Incidence densities in a competing events analysis. Am J Epidemiol. 2010;172:1077–84.

    Article  PubMed  Google Scholar 

  37. Goetghebeur E, Ryan L. Analysis of competing risks survival data when some failure types are missing. Biometrika. 1995;82:821–33.

    Article  Google Scholar 

  38. Van Rompaye B, Jaffar S, Goetghebeur E. Estimation with cox models: cause-specific survival analysis with misclassified cause of failure. Epidemiol Camb Mass. 2012;23:194–202.

    Article  Google Scholar 

  39. Nevo D, Nishihara R, Ogino S, Wang M. The competing risks Cox model with auxiliary case covariates under weaker missing-at-random cause of failure. Lifetime Data Anal. 2017; In Press

  40. Lu K, Tsiatis AA. Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure. Biometrics. 2001;57:1191–7.

    Article  PubMed  CAS  Google Scholar 

  41. Bakoyannis G, Siannis F, Touloumi G. Modelling competing risks data with missing cause of failure. Stat Med. 2010;29:3172–85.

    Article  PubMed  Google Scholar 

  42. Rubin DB. Multiple imputation for nonresponse in surveys. John Wiley & Sons; 2004.

  43. Raghunathan TE, Lepkowski JM, Van Hoewyk J, Solenberger P. A multivariate technique for multiply imputing missing values using a sequence of regression models. Surv Methodol 2001;27:85–96.

  44. van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res. 2007;16:219–42.

    Article  PubMed  Google Scholar 

  45. Lau B, Cole SR, Moore RD, Gange SJ. Evaluating competing adverse and beneficial outcomes using a mixture model. Stat Med. 2008;27:4313–27.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nicolaie MA, van Houwelingen HC, Putter H. Vertical modeling: a pattern mixture approach for competing risks modeling. Stat Med. 2010;29:1190–205.

    PubMed  CAS  Google Scholar 

  47. Lau B, Cole SR, Gange SJ. Parametric mixture models to evaluate and summarize hazard ratios in the presence of competing risks with time-dependent hazards and delayed entry. Stat Med. 2011;30:654–65.

    Article  PubMed  Google Scholar 

  48. • Nicolaie MA, van Houwelingen HC, Putter H. Vertical modelling: analysis of competing risks data with missing causes of failure. Stat Methods Med Res. 2015;24:891–908. This study provides information on how to conduct competing risk analyses when which event occurred may be missing for some observations

    Article  PubMed  CAS  Google Scholar 

  49. Crowder MJ. Classical competing risks: CRC Press; 2001.

  50. Neuhaus JM. Bias and efficiency loss due to misclassified responses in binary regression. Biometrika. 1999;86:843–55.

    Article  Google Scholar 

  51. Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. Measurement error in nonlinear models: a modern perspective: CRC press; 2006.

  52. Lyles RH, Tang L, Superak HM, King CC, Celentano DD, Lo Y, et al. Validation data-based adjustments for outcome misclassification in logistic regression: an illustration. Epidemiology. 2011;22:589–97.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Moons KGM, Donders RART, Stijnen T, Harrell FE. Using the outcome for imputation of missing predictor values was preferred. J Clin Epidemiol. 2006;59:1092–101.

    Article  PubMed  Google Scholar 

  54. van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med. 1999;18:681–94.

    Article  PubMed  Google Scholar 

  55. Clark TG, Altman DG. Developing a prognostic model in the presence of missing data: an ovarian cancer case study. J Clin Epidemiol. 2003;56:28–37.

    Article  PubMed  Google Scholar 

  56. Barzi F, Woodward M. Imputations of missing values in practice: results from imputations of serum cholesterol in 28 cohort studies. Am J Epidemiol. 2004;160:34–45.

    Article  PubMed  Google Scholar 

  57. Seaman SR, Bartlett JW, White IR. Multiple imputation of missing covariates with non-linear effects and interactions: an evaluation of statistical methods. BMC Med Res Methodol. 2012;12:46.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bartlett J, Keogh R. smcfcs: Multiple imputation of covariates by substantive model compatible fully conditional specification [Internet]. 2017 [cited 2017 Dec 9]. Available from: https://cran.r-project.org/web/packages/smcfcs/index.html

Download references

Funding

This work was supported by NIH grants U01 HL121812, U01 AA020793, P30 AI094189, and U24 OD023382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Lau.

Ethics declarations

Conflict of Interest

Bryan Lau reports grants from NIH, during the conduct of the study.

Catherine Lesko declares no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epidemiologic Methods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, B., Lesko, C. Missingness in the Setting of Competing Risks: from Missing Values to Missing Potential Outcomes. Curr Epidemiol Rep 5, 153–159 (2018). https://doi.org/10.1007/s40471-018-0142-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-018-0142-3

Keywords

Navigation