Skip to main content
Log in

A new implicit energy conservative difference scheme with fourth-order accuracy for the generalized Rosenau–Kawahara-RLW equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In the present work, a new implicit fourth-order energy conservative finite difference scheme is proposed for solving the generalized Rosenau–Kawahara-RLW equation. We first design two high-order operators to approximate the third- and fifth-order derivatives in the generalized equation, respectively. Then, the generalized Rosenau–Kawahara-RLW equation is discreted by a three-level implicit finite difference technique in time, and a fourth-order accurate in space. Furthermore, we prove that the new scheme is energy conserved, unconditionally stable, and convergent with \(O(\tau ^{2}+h^{4})\). Finally, two numerical experiments are carried out to show that the present scheme is efficient, reliable, high-order accurate, and can be used to study the solitary wave at long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Mdallal QM, Syam MI (2007) Sine-cosine method for finding the soliton solutions of the generalized fifth-order nonlinear equation. Chaos Soliton Fract. 33:1610–1617

    Article  MathSciNet  MATH  Google Scholar 

  • Atouani N, Omrani K (2013) Galerkin finite element method for the Rosenau-RLW equation. Comput. Math. Appl. 66:289–303

    Article  MathSciNet  MATH  Google Scholar 

  • Atouani N, Omrani K (2015) On the convergence of conservative difference schemes for the 2D generalized Rosenau-Korteweg de Vries equation. Appl. Math. Comput. 250:832–847

    MathSciNet  MATH  Google Scholar 

  • Aydin A (2015) An unconventional splitting for Korteweg de Vries–Burgers equation. Eur. J. Pure Appl. Math. 8:50–63

    MathSciNet  MATH  Google Scholar 

  • Bahadir AR (2005) Exponential finite difference method applied to Korteweg–de Vries equation for small times. Appl. Math. Comput. 160:675–682

    MathSciNet  MATH  Google Scholar 

  • Biswas A, Triki H, Labidi M (2011) Bright and dark solitons of the Rosenau–Kawahara equation with power law nonlinearity. Phys. Wave Phenom. 19:24–29

    Article  Google Scholar 

  • Burde GI (2011) Solitary wave solutions of the high-order KdV models for bi-directional water waves. Commun. Nonlinear. Sci. Numer. Simulat. 16:1314–1328

    Article  MathSciNet  MATH  Google Scholar 

  • Cai WJ, Sun YJ, Wang YS (2015) Variational discretizations for the generalized Rosenau-type equations. Appl. Math. Comput. 271:860–873

    MathSciNet  Google Scholar 

  • Chung SK, Pani AK (2001) Numerical methods for the Rosenau equation. Appl. Anal. 77:351–369

    Article  MathSciNet  MATH  Google Scholar 

  • Cui Y, Mao DK (2007) Numerical method satisfying the first two conservation laws for the Korteweg–de Vries equation. J. Comput. Phys. 227:376–399

    Article  MathSciNet  MATH  Google Scholar 

  • Dag I, Dereli Y (2010) Numerical solution of RLW equation using radial basis functions. Int. J. Comput. Math. 87:63–76

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M, Mohebbi A (2014) The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions. Comput. Math. Appl. 68:212–237

    Article  MathSciNet  MATH  Google Scholar 

  • Dutykh D, Chhay M, Fedele F (2013) Geometric numerical schemes for the KdV equation. Comput. Math. Math. Phys. 53:221–236

    Article  MathSciNet  MATH  Google Scholar 

  • Ebadi G, Mojaver A, Triki H, Yildirim A, Biswas A (2013) Topological solitons and other solutions of the Rosenau-KdV equation with power law nonlinearity. Rom. J. Phys. 58:3–14

    MathSciNet  Google Scholar 

  • Esfahani A (2011) Solitary wave solutions for generalized Rosenau-KdV equation. Commun. Theor. Phys. 55:396–398

    Article  MathSciNet  MATH  Google Scholar 

  • García-Alvarado Martín G, Omel’yanov GA (2014) Interaction of solitons and the effect of radiation for the generalized KdV equation. Commun. Nonlinear. Sci. Numer. Simulat. 19:2724–2733

    Article  MathSciNet  Google Scholar 

  • Ham FE, Lien FS, Strong AB (2002) A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids. J. Comput. Phys. 177:117–133

    Article  MATH  Google Scholar 

  • He DD (2015) New solitary solutions and a conservative numerical method for the Rosenau–Kawahara equation with power law nonlinearity. Nonlinear Dyn. 82:1177–1190

    Article  MathSciNet  MATH  Google Scholar 

  • He DD (2016) Exact solitary solution and a three-level linearly implicit conservative finite difference method for the generalized Rosenau–Kawahara-RLW equation with generalized Novikov type perturbation. Nonlinear Dyn. 8:1–20

    MathSciNet  MATH  Google Scholar 

  • He DD (2016) On the \(L^{\infty }\)-norm convergence of a three-level linearly implicit finite difference method for the extended Fisher–Kolmogorov equation in both 1D and 2D. Comput. Math. Appl. 71:2594–2607

    MathSciNet  Google Scholar 

  • He DD, Pan KJ (2015) A linearly implicit conservative difference scheme for the generalized Rosenau–Kawahara-RLW equation. Appl. Math. Comput. 271:323–336

    MathSciNet  Google Scholar 

  • Hu JS, Wang YL (2013) A high accuracy linear conservative difference scheme for Rosenau-RLW equation. Math. Probl. Eng. 2:841–860

    MathSciNet  MATH  Google Scholar 

  • Hu B, Xu Y, Hu J (2008) Crank–Nicolson finite difference scheme for the Rosenau–Burgers equation. Appl. Math. Comput. 204:311–316

    MathSciNet  MATH  Google Scholar 

  • Hu J, Xu Y, Hu B, Xie X (2014) Two conservative difference schemes for Rosenau–Kawahara equation. Adv. Math. Phys. 10:396–409

    MathSciNet  MATH  Google Scholar 

  • Jin L (2009) Application of variational iteration method and homotopy perturbation method to the modified Kawahara equation. Math. Comput. Model. 49:573–578

    Article  MathSciNet  MATH  Google Scholar 

  • Karakoc BG, Ak T (2016) Numerical simulation of dispersive shallow water waves with Rosenau-KdV equation. Int. J. Adv. Appl. Math. Mech. 3:32–40

    MathSciNet  MATH  Google Scholar 

  • Kawahara T (1972) Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33:260–264

    Article  Google Scholar 

  • Kolebaje O, Oyewande O (2012) Numerical solution of the Korteweg De Vries equation by finite difference and adomian decomposition method. Int. J. Basic Appl. Sci. 1:321–335

    Google Scholar 

  • Korkmaz A, Dag I (2009) Crank–Nicolson differential quadrature algorithms for the Kawahara equation. Chaos Solitons Fractals 42:65–73

    Article  MathSciNet  MATH  Google Scholar 

  • Korteweg DJ, de Vries G (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39:422–443

    Article  MathSciNet  MATH  Google Scholar 

  • Labidi M, Biswas A (2011) Application of He’s principles to Rosenau–Kawahara equation. Math. Eng. Sci. Aerosp. 2:183–197

    MATH  Google Scholar 

  • Li SG (2016) Numerical analysis for fourth-order compact conservative difference scheme to solve the 3D Rosenau-RLW equation. Comput. Math. Appl. 72:2388–2407

    Article  MathSciNet  MATH  Google Scholar 

  • Ma HC, Deng AP, Wang Y (2011) Exact solution of a KdV equation with variable coefficients. Comput. Math. Appl. 61:2278–2280

    Article  MathSciNet  MATH  Google Scholar 

  • Manickam SAV, Pani AK, Chung SK (1998) A second order splitting combined with orthogonal cubic spline collocation method for the Rosenau equation. Numer. Methods Partial Differ. Equ. 14:695–716

    Article  MathSciNet  MATH  Google Scholar 

  • Mohanty RK, Dai W, Han F (2015) A new high accuracy method for two-dimensional biharmonic equation with nonlinear third derivative terms: application to Navier–Stokes equations of motion. Int. J. Comput. Math. 92:1574–1590

    Article  MathSciNet  MATH  Google Scholar 

  • Mohebbi A, Faraz Z (2017) Solitary wave solution of nonlinear Benjamin–Bona–Mahony–Burgers equation using a high-order difference scheme. Comput. Appl. Math. 36:915–927

    Article  MathSciNet  MATH  Google Scholar 

  • Omrani K, Abidi F, Achouri T, Khiari N (2008) A new conservative finite difference scheme for the Rosenau equation. Appl. Math. Comput. 201:35–43

    MathSciNet  MATH  Google Scholar 

  • Ozer S, Kutluay S (2005) An analytical numerical method applied to Korteweg–de Vries equation. Appl. Math. Comput. 164:789–797

    MathSciNet  MATH  Google Scholar 

  • Pan XT, Zhang L (2012) On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation. Appl. Math. Model. 36:3371–3378

    Article  MathSciNet  MATH  Google Scholar 

  • Pan XT, Zheng KL, Zhang LM (2013) Finite difference discretization of the Rosenau-RLW equation. Appl. Anal. 92:2590–1601

    Article  MathSciNet  MATH  Google Scholar 

  • Pan XT, Wang YJ, Zhang LM (2015) Numerical analysis of a pseudo-compact C–N conservative scheme for the Rosenau-KdV equation coupling with the Rosenau-RLW equation. Bound. Value Probl. 65:221. https://doi.org/10.1186/s13661-015-0328-2

    Article  MathSciNet  MATH  Google Scholar 

  • Park MA (1992) Pointwise decay estimate of solutions of the generalized Rosenau equation. J. Korean Math. Soc. 29:261–280

    MathSciNet  MATH  Google Scholar 

  • Polat N, Kaya D, Tutalar HI (2006) An analytic and numerical solution to amodifiedKawahara equation and a convergence analysis of the method. Appl. Math. Comput. 179:466–472

    MathSciNet  MATH  Google Scholar 

  • Ran MH, Zhang CJ (2016) A conservative difference scheme for solving the strongly coupled nonlinear fractional Schröinger equations. Commun. Nonlinear. Sci. Numer. Simulat. 41:64–83

    Article  Google Scholar 

  • Razborova P, Ahmed B, Biswas A (2014a) Solitons, shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity. Appl. Math. Info. Sci. 8:485–491

    Article  MathSciNet  Google Scholar 

  • Razborova P, Moraru L, Biswas A (2014b) Perturbation of dispersive shallow water wave swith Rosenau-KdV-RLW equation with power law nonlinearity. Rom. J. Phys. 59:658–676

    Google Scholar 

  • Razborova P, Kara AH, Biswas A (2015) Additional conservation laws for Rosenau-KdV-RLW equation with power law nonlinearity by Lie symmetry. Nonlinear Dyn. 79:743–748

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenau P (1988) Dynamics of dense discrete systems. Prog. Theor. Phys. 79:1028–1042

    Article  Google Scholar 

  • Saha A (2012) Topological 1-soliton solutions for the generalized Rosenau-KdV equation. Fund. J. Math. Phys. 2:19–25

    Google Scholar 

  • Sanchez P, Ebadi G, Mojaver A, Mirzazadeh M, Eslami M, Biswas A (2015) Solitons and other solutions to perturbed Rosenau-KdV-RLW equation with power law nonlinearity. Acta Phys. Pol. A 127:1577–1586

    Article  Google Scholar 

  • Shao XH, Xue GY, Li CJ (2013) A conservative weighted finite difference scheme for regularized long wave equation. Appl. Math. Comput. 219:9202–9209

    MathSciNet  MATH  Google Scholar 

  • Triki H, Biswas A (2013) Perturbation of dispersive shallow water waves. Ocean Eng. 63:1–7

    Article  Google Scholar 

  • Vaneeva OO, Papanicolaou NC, Christou MA, Sophocleous C (2014) Numerical solutions of boundary value problems for variable coefficient generalized KdV equations using Lie symmetries. Commun. Nonlinear. Sci. Numer. Simulat. 19:3074–3085

    Article  MathSciNet  Google Scholar 

  • Wang X, Dai W (2018) A three-level linear implicit conservative scheme for the Rosenau-KdV-RLW equation. J. Comput. Appl. Math. 330:295–306

    Article  MathSciNet  MATH  Google Scholar 

  • Wang M, Li DS, Cui P (2011) A conservative finite difference scheme for the generalized Rosenau equation. Int. J. Pure Appl. Math. 71:539–549

    MathSciNet  MATH  Google Scholar 

  • Wang GW, Xu TZ, Ebadi G, Johnson S, Strong AJ, Biswas A (2014) Singular solitons, shock waves, and other solutions to potential KdV equation. Nonlinear Dyn. 76:1059–1068

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Li S, Wang J (2017) A conservative weighted finite difference scheme for the generalized Rosenau-RLW equation. Comp. Appl. Math. 36:63–78

    Article  MathSciNet  MATH  Google Scholar 

  • Wongsaijai B, Poochinapan K (2014) A three-level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau-KdV equation and the Rosenau-RLW equation. Appl. Math. Comput. 245:289–304

    MathSciNet  MATH  Google Scholar 

  • Wongsaijai B, Poochinapan K, Disyadej T (2014) A compact finite difference method for solving the General Rosenau-RLW equation. Int. J. Appl. Math. 44:192–199

    MathSciNet  Google Scholar 

  • Ye H, Liu F, Anh V (2015) Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Computat. Phys. 298:652–660

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng MB, Zhou J (2014) An average linear difference scheme for the generalized Rosenau-KdV equation. J. Appl. Math. 2:1–9

    MathSciNet  Google Scholar 

  • Zuo JM (2009) Solitons and periodic solutions for the Rosenau-KdV and Rosenau–Kawahara equations. Appl. Math. Comput. 215:835–840

    MathSciNet  MATH  Google Scholar 

  • Zuo JM (2015) Soliton solutions of a general Rosenau–Kawahara-RLW equation. J. Math. Res. 7:24–28

    Article  Google Scholar 

  • Zuo J, Zhang Y, Zhang T, Chang F (2010) A new conservative difference scheme for the general Rosenau-RLW equation. Bound. Value Probl. 65:1–13. https://doi.org/10.1155/2010/516260

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Wang.

Additional information

Communicated by Armin Iske.

This work was supported in part by the National Natural Science Foundation of China (no. U1304106). The authors thank the reviewers and editor for their many valuable comments and suggestions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Dai, W. A new implicit energy conservative difference scheme with fourth-order accuracy for the generalized Rosenau–Kawahara-RLW equation. Comp. Appl. Math. 37, 6560–6581 (2018). https://doi.org/10.1007/s40314-018-0685-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0685-4

Keywords

Mathematics Subject Classification

Navigation