Skip to main content
Log in

Machine Learning Approach to Improve Satellite Orbit Prediction Accuracy Using Publicly Available Data

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Efficient and high precision orbit prediction is increasingly crucial for improved Space Situational Awareness. Due to the lack of the required information such as space environment conditions and characteristics of Resident Space Objects (RSOs), satellite collisions have happened, partially because that the solely physics-based approaches can fail to achieve the required accuracy for collision avoidance. With the hypothesis that a Machine Learning (ML) approach can learn the underlying pattern of the orbit prediction errors from historical data, in this paper, the Support Vector Machine (SVM) is explored for improving the orbit prediction accuracy. Two publicly available Two-Line Element (TLE) catalog and International Laser Ranging Service (ILRS) catalog are used to validate the proposed ML approach. The position and velocity components of 11 total RSOs maintained at both catalogs are studied. Results of the study demonstrate that the designed dataset structure and SVM model can improve the orbit prediction accuracy with good performance on most cases. The performance on RSOs belonging to different orbit types is analyzed using different sizes of training and testing data. Results of the paper demonstrate the potential of using the proposed ML approach to improve the accuracy of TLE catalog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. http://www.space-track.org/

  2. https://ilrs.cddis.eosdis.nasa.gov/docs/2017/cpf_sample_code_v1.01d.tgz, retrieved on 2018/04/17.

  3. https://ilrs.cddis.eosdis.nasa.gov/missions/satellite_missions/current_missions/index.html, retrieved on 2018/04/19.

  4. https://ilrs.cddis.eosdis.nasa.gov/missions/satellite_missions/past_missions/index.html, retrieved on 2018/04/19.

  5. https://ilrs.cddis.eosdis.nasa.gov/data_and_products/predictions/prediction_centers.html, retrieved on 2018/04/17.

References

  1. Anz-Meador P., Shoots D.: Orbital Debris Quarterly News. NASA Orbital Debris Program Off. 22(1), 1–12 (2018). https://www.orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv22i1.pdf

    Google Scholar 

  2. Kelso, T.S.: Iridium 33/Cosmos 2251 Collision. http://celestrak.com/events/collision.asp (2009)

  3. Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.-T.: Learning from Data. AMLBook. ISBN 1-60049-006-9. http://amlbook.com/ (2012)

  4. Mitchell, T.M.: Machine Learning. McGraw-Hill Series in Computer Science, 1st edn. McGraw-Hill Education, New York (1997). http://www.cs.cmu.edu/%0020tom/mlbook.html. ISBN 0-07-042807-7

    Google Scholar 

  5. Ampatzis, C., Izzo, D.: Machine learning techniques for approximation of objective functions in trajectory optimisation. In: The IJCAI-09 Workshop on Artificial Intelligence in Space, vol. 2009, Pasadena, https://www.esa.int/gsp/ACT/doc/AI/pub/ACT-RPR-AI-2009-09-aanapproximation.pdf (2009)

  6. Hartikainen, J., Seppänen, M., SäRkkÄ, S.: State-Space Inference for Non-Linear Latent Force Models with Application to Satellite Orbit Prediction. In: 29Th International Conference on Machine Learning (ICML-12), Edinburgh

  7. Sharma, S., Cutler, J.W.: Robust Orbit Determination and Classification: A Learning Theoretic Approach IPN Progress Report 42–203. Jet Propulsion Laboratory (2015)

  8. Peng, H., Bai, X.: Improving Orbit Prediction Accuracy through Supervised Machine Learning. Adv. Space Res. 61(10), 2628–2646, ISSN 02731177. https://doi.org/10.1016/j.asr.2018.03.001, http://linkinghub.elsevier.com/retrieve/pii/S0273117718302035 (2018a)

  9. Peng, H., Bai, X.: Artificial Neural Network–Based Machine Learning Approach to Improve Orbit Prediction Accuracy. J. Spacecr. Rocket. 55(5), 1248–1260. ISSN 0022-4650, 1533–6794. https://doi.org/10.2514/1.A34171 (2018b)

  10. Peng, H., Bai, X.: Exploring capability of Support Vector Machine for improving satellite orbit prediction accuracy. J. Aerosol Inf. Syst. 15(16), 366–381. https://doi.org/10.2514/1.I010616 (2018c)

  11. Peng, H., Bai, X.: Recovering Area-to-Mass Ratio of Resident Space Objects through Data Mining. Acta Astron. 142, 75–86 (2018d). ISSN 0094-5765. https://doi.org/10.1016/j.actaastro.2017.09.030, http://www.sciencedirect.com/science/article/pii/S0094576517304058

    Article  Google Scholar 

  12. Vallado, D., Virgili, B., Flohrer, T.: Improved SSA Through Orbit Determination of Two-Line Element Sets. In: 6th European Conference on Space Debris, Darmstadt, Germnay., https://doi.org/10.13140/2.1.4644.2241. http://adsabs.harvard.edu/abs/2013ESASP.723E..48V (2013)

  13. Pearlman, M. R., Degnan, J. J., Bosworth, J. M.: The International Laser Ranging Service. Adv. Space Res. 30 (2), 135–143 (2002). ISSN 0273-1177. https://doi.org/10.1016/S0273-1177(02)00277-6. http://www.sciencedirect.com/science/article/pii/S0273117702002776

    Article  Google Scholar 

  14. Vallado, D., Crawford, P., Hujsak, R., Kelso, T.S.: Revisiting Spacetrack Report #3. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pp. 1–88. American Institute of Aeronautics and Astronautics, ISBN 978-1-62410-048-2. https://doi.org/10.2514/6.2006-6753 (2006)

  15. Finkleman, D.: “TLE Or Not TLE?” That is the Question. In: AAS/AIAA Astrodynamics Specialist Conference 2007, Mackinac Island (2007)

  16. Bai, X.-Z., Chen, L., Tang, Guo-J.: Periodicity characterization of orbital prediction error and Poisson series fitting. Adv. Space Res. 50(5), 560–575 (2012). ISSN 02731177. https://doi.org/10.1016/j.asr.2012.05.018 https://doi.org/10.1016/j.asr.2012.05.018. http://linkinghub.elsevier.com/retrieve/pii/S0273117712003456

    Article  Google Scholar 

  17. Legendre, P., Deguine, B., Garmier, R., Revelin, B.: Two Line Element Accuracy Assessment Based On A Mixture of Gaussian Laws. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pages 1–13, Reston, American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-048-2. https://doi.org/10.2514/6.2006-6518 (2006)

  18. Wang, R., Liu, J., Zhang, Q. M.: Propagation errors analysis of TLE data. Adv. Space Res. 43(7), 1065–1069 (2009). ISSN 0273-1177. https://doi.org/10.1016/j.asr.2008.11.017. http://www.sciencedirect.com/science/article/pii/S0273117708006121

    Article  Google Scholar 

  19. Geul, J., Mooij, E., Noomen, R.: TLE uncertainty estimation using robust weighted differencing. Advances in Space Research, ISSN 0273-1177. https://doi.org/10.1016/j.asr.2017.02.038. http://www.sciencedirect.com/science/article/pii/S0273117717301515 (2017)

  20. Sang, J., Bennett, J.C., Smith, C.: Experimental results of debris orbit predictions using sparse tracking data from Mt. Stromlo. Acta Astron. 102, 258–268 (2014). ISSN 00945765. https://doi.org/10.1016/j.actaastro.2014.06.012 https://doi.org/10.1016/j.actaastro.2014.06.012. http://linkinghub.elsevier.com/retrieve/pii/S0094576514002112

    Article  Google Scholar 

  21. Chen, L., Bai, X.-Z., Liang, Y.-G., Li, K.-B.: Orbital Error Analysis Based on Historical Data. In: Orbital Data Applications for Space Objects, pp. 77–105. Springer, Singapore, ISBN 978-981-10-2962-2 978-981-10-2963-9. https://doi.org/10.1007/978-981-10-2963-9_3 (2017)

  22. Früh, C., Schildknecht, T.: Accuracy of Two-Line-Element Data for Geostationary and High-Eccentricity Orbits. J. Guid. Control Dyn. 35(5), 1483–1491 (2012). ISSN 0731-5090. https://doi.org/10.2514/1.55843

    Article  Google Scholar 

  23. Kenneth Chan, F.: Spacecraft Collision Probability. American Institute of Aeronautics and Astronautics, Inc., Washington (2008). ISBN 978-1-884989-18-6. https://doi.org/10.2514/4.989186

    Book  Google Scholar 

  24. Lemmens, S., Krag, H.: Two-Line-Elements-Based Maneuver Detection Methods for Satellites in Low Earth Orbit. J. Guid. Control Dyn. 37(3), 860–868 (2014). ISSN 0731-5090. https://doi.org/10.2514/1.61300

    Article  Google Scholar 

  25. Muldoon, A.R., Elkaim, G.H., Rickard, I.F., Weeden, B.: Improved orbital debris trajectory estimation based on sequential TLE Processing. In: Paper IAC-09. A6. 2.9 Presented at the 60th International Astronautical Congress. Citeseer, Daejeon. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.5898&rep=rep1&type=pdf (2009)

  26. Levit, C., Marshall, W.: Improved orbit predictions using two-line elements. Adv. Space Res. 47(7), 1107–1115 (2011). ISSN 02731177. https://doi.org/10.1016/j.asr.2010.10.017

    Article  Google Scholar 

  27. Hejduk, M. D., Casali, S. J., Cappellucci, D. A., Ericson, N. L., Snow, D. E.: A catalogue-wide implementation of general Perturbations orbit determination extrapolated from higher order orbital theory solutions. Adv. Astron. Sci. 148, 619–632 (2013). ISSN 00653438

    Google Scholar 

  28. Sang, J., Li, Bin: A Tle-Based Representation of Precise Orbit Prediction Results. In: The 6Th International Conference on Astrodynamics Tools and Techniques (2016)

  29. Rivera, J., Bai, X.: Improving the Orbit Propagation Accuracy of Two-Line-Element Satellite. In: 67Th International Astronautical Congress, Guadalajara (2016)

  30. Hammer, B., Gersmann, K.: A Note on the Universal Approximation Capability of Support Vector Machines. Neural Process. Lett. 17(1), 43–53 (2003). ISSN 1370-4621, 1573-773X. https://doi.org/10.1023/A:1022936519097

    Article  Google Scholar 

  31. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York, ISBN 978-1-4419-3160-3 978-1-4757-3264-1. https://doi.org/10.1007/978-1-4757-3264-1(2000)

  32. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004). ISSN 0960-3174. https://doi.org/10.1023/B:STCO.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  33. Maisonobe, L., Pommier, V., Parraud, P.: Orekit: An Open Source Library for Operational Flight Dynamics Applications. In: 4th International Conference on Astrodynamics Tools and Techniques, https://www.researchgate.net/publication/310250345_OREKIT_AN_OPEN_SOURCE_LIBRARY_FOR_OPERATIONAL_FLIGHT_DYNAMICS_APPLICATIONS (2010)

  34. Ricklefs, R.L.: Consolidated Laser Ranging Prediction Format v1.01. ILRS Data Format and Procedures Working Group, https://ilrs.cddis.eosdis.nasa.gov/docs/cpf_1.00.pdf (2006)

  35. Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 1st edn. The McGraw-Hill Companies, Inc., New York (1997). ISBN 978-0-07-066834-8. http://www.springer.com/us/book/9780070668348

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would acknowledge the research support from the Air Force Office of Scientific Research (AFOSR) FA9550-16-1-0184 and the Office of Naval Research (ONR) N00014-16-1-2729.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Bai.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Dr. John L. Junkins on the occasion of his seventy-fifth birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Bai, X. Machine Learning Approach to Improve Satellite Orbit Prediction Accuracy Using Publicly Available Data. J Astronaut Sci 67, 762–793 (2020). https://doi.org/10.1007/s40295-019-00158-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00158-3

Keywords

Navigation