Skip to main content
Log in

G-Protein-Coupled Receptor Kinase 2 and Hypertension

Molecular Insights and Pathophysiological Mechanisms

  • Review Article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Numerous factors partake in the fine-tuning of arterial blood pressure. The heptahelical G-protein-coupled receptors (GPCRs) represent one of the largest classes of cell-surface receptors. Further, ligands directed at GPCRs account for nearly 30 % of current clinical pharmaceutical agents available. Given the wide variety of GPCRs involved in blood pressure control, it is reasonable to speculate for a potential role of established intermediaries involved in the GPCR desensitization process, like the G-protein-coupled receptor kinases (GRKs), in the regulation of vascular tone. Of the seven mammalian GRKs, GRK2 seems to be the most relevant isoform at the cardiovascular level. This review attempts to assemble the currently available information concerning GRK2 and hypertension, opening new potential fields of translational investigation to treat this vexing disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Santulli G. Coronary heart disease risk factors and mortality. JAMA. 2012;307(11):1137.

    Article  PubMed  CAS  Google Scholar 

  2. Trimarco B, Ricciardelli B, Cuocolo A, Volpe M, De Luca N, Mele AF, et al. Effects of coronary occlusion on arterial baroreflex control of heart rate and vascular resistance. Am J Physiol. 1987;252(4 Pt 2):H749–59.

    PubMed  CAS  Google Scholar 

  3. Savoia C, Touyz RM, Volpe M, Schiffrin EL. Angiotensin type 2 receptor in resistance arteries of type 2 diabetic hypertensive patients. Hypertension. 2007;49(2):341–6.

    Article  PubMed  CAS  Google Scholar 

  4. Iaccarino G, Ciccarelli M, Sorriento D, Cipolletta E, Cerullo V, Iovino GL, et al. AKT participates in endothelial dysfunction in hypertension. Circulation. 2004;109(21):2587–93.

    Article  PubMed  CAS  Google Scholar 

  5. Tocchetti CG, Stanley BA, Murray CI, Sivakumaran V, Donzelli S, Mancardi D, et al. Playing with cardiac “redox switches”: the “HNO way” to modulate cardiac function. Antioxid Redox Signal. 2011;14(9):1687–98

    Article  PubMed  CAS  Google Scholar 

  6. Santulli G, Cipolletta E, Sorriento D, Del Giudice C, Anastasio A, Monaco S, et al. CaMK4 gene deletion induces hypertension. J Am Heart Assoc. 2012;1:e001081.

    Article  PubMed  Google Scholar 

  7. Lymperopoulos A. Ischemic emergency? Endothelial cells have their own ‘adrenaline shot’ at hand. Hypertension. 2012;60(1):12–4.

    Article  PubMed  CAS  Google Scholar 

  8. Iaccarino G, Ciccarelli M, Sorriento D, Galasso G, Campanile A, Santulli G, et al. Ischemic neoangiogenesis enhanced by beta2-adrenergic receptor overexpression: a novel role for the endothelial adrenergic system. Circ Res. 2005;97(11):1182–9.

    Article  PubMed  CAS  Google Scholar 

  9. Sorriento D, Santulli G, Del Giudice C, Anastasio A, Trimarco B, Iaccarino G. Endothelial cells are able to synthesize and release catecholamines both in vitro and in vivo. Cardiovasc Res. 2012;93:S61–75.

    Google Scholar 

  10. Santulli G, Ciccarelli M, Palumbo G, Campanile A, Galasso G, Ziaco B, et al. In vivo properties of the proangiogenic peptide QK. J Transl Med. 2009;7:41.

    Article  PubMed  Google Scholar 

  11. Ciccarelli M, Santulli G, Campanile A, Galasso G, Cervero P, Altobelli GG, et al. Endothelial alpha1-adrenoceptors regulate neo-angiogenesis. Br J Pharmacol. 2008;153(5):936–46.

    Article  PubMed  CAS  Google Scholar 

  12. Sorriento D, Santulli G, Del Giudice C, Anastasio A, Trimarco B, Iaccarino G. Endothelial cells are able to synthesize and release catecholamines both in vitro and in vivo. Hypertension. 2012;60(1):129–36.

    Article  PubMed  CAS  Google Scholar 

  13. Izzo R, Cipolletta E, Ciccarelli M, Campanile A, Santulli G, Palumbo G, et al. Enhanced GRK2 expression and desensitization of betaAR vasodilatation in hypertensive patients. Clin Transl Sci. 2008;1(3):215–20.

    Article  PubMed  CAS  Google Scholar 

  14. Stein CM, Nelson R, Deegan R, He H, Wood M, Wood AJ. Forearm beta adrenergic receptor-mediated vasodilation is impaired, without alteration of forearm norepinephrine spillover, in borderline hypertension. J Clin Invest. 1995;96(1):579–85.

    Article  PubMed  CAS  Google Scholar 

  15. Khalaila JM, Elami A, Caraco Y. Interaction between beta2 adrenergic receptor polymorphisms determines the extent of isoproterenol-induced vasodilatation ex vivo. Pharmacogenet Genomics. 2007;17(10):803–11.

    Article  PubMed  CAS  Google Scholar 

  16. Cockcroft JR, Gazis AG, Cross DJ, Wheatley A, Dewar J, Hall IP, et al. Beta(2)-adrenoceptor polymorphism determines vascular reactivity in humans. Hypertension. 2000;36(3):371–5.

    Article  PubMed  CAS  Google Scholar 

  17. Hindorff LA, Heckbert SR, Psaty BM, Lumley T, Siscovick DS, Herrington DM, et al. Beta(2)-adrenergic receptor polymorphisms and determinants of cardiovascular risk: the Cardiovascular Health Study. Am J Hypertens. 2005;18(3):392–7.

    Article  PubMed  CAS  Google Scholar 

  18. Barbato E, Berger A, Delrue L, Van Durme F, Manoharan G, Boussy T, et al. GLU-27 variant of beta2-adrenergic receptor polymorphisms is an independent risk factor for coronary atherosclerotic disease. Atherosclerosis. 2007;194(2):e80–6.

    Article  PubMed  CAS  Google Scholar 

  19. Drake MT, Shenoy SK, Lefkowitz RJ. Trafficking of G protein-coupled receptors. Circ Res. 2006;99(6):570–82.

    Article  PubMed  CAS  Google Scholar 

  20. Lymperopoulos A, Bathgate A. Pharmacogenomics of the heptahelical receptor regulators G-protein-coupled receptor kinases and arrestins: the known and the unknown. Pharmacogenomics. 2012;13(3):323–41.

    Article  PubMed  CAS  Google Scholar 

  21. Feldman RD, Limbird LE, Nadeau J, Robertson D, Wood AJ. Leukocyte beta-receptor alterations in hypertensive subjects. J Clin Invest. 1984;73(3):648–53.

    Article  PubMed  CAS  Google Scholar 

  22. Lefkowitz RJ, Cotecchia S, Kjelsberg MA, Pitcher J, Koch WJ, Inglese J, et al. Adrenergic receptors: recent insights into their mechanism of activation and desensitization. Adv Second Messenger Phosphoprot Res. 1993;28:1–9.

    CAS  Google Scholar 

  23. Zeiders JL, Seidler FJ, Iaccarino G, Koch WJ, Slotkin TA. Ontogeny of cardiac beta-adrenoceptor desensitization mechanisms: agonist treatment enhances receptor/G-protein transduction rather than eliciting uncoupling. J Mol Cell Cardiol. 1999;31(2):413–23.

    Article  PubMed  CAS  Google Scholar 

  24. Iaccarino G, Lefkowitz RJ, Koch WJ. Myocardial G protein-coupled receptor kinases: implications for heart failure therapy. Proc Assoc Am Phys. 1999;111(5):399–405.

    PubMed  CAS  Google Scholar 

  25. Iaccarino G, Keys JR, Rapacciuolo A, Shotwell KF, Lefkowitz RJ, Rockman HA, et al. Regulation of myocardial betaARK1 expression in catecholamine-induced cardiac hypertrophy in transgenic mice overexpressing alpha1B-adrenergic receptors. J Am Coll Cardiol. 2001;38(2):534–40.

    Article  PubMed  CAS  Google Scholar 

  26. Harris DM, Cohn HI, Pesant S, Eckhart AD. GPCR signalling in hypertension: role of GRKs. Clin Sci (Lond). 2008;115(3):79–89.

    Article  CAS  Google Scholar 

  27. Iaccarino G, Campanile A, Santulli G, Zuppieri F, Koch WJ. G protein-coupled receptor kinases and hypertension: a review of disease mechanisms. High Blood Press Cardiovasc Prev. 2006;13(4):151–8.

    Article  CAS  Google Scholar 

  28. Arraes SM, Freitas MS, da Silva SV, de Paula Neto HA, Alves-Filho JC, Auxiliadora Martins M, et al. Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood. 2006;108(9):2906–13.

    Article  PubMed  CAS  Google Scholar 

  29. Yoshida N, Haga K, Haga T. Identification of sites of phosphorylation by G-protein-coupled receptor kinase 2 in beta-tubulin. Eur J Biochem. 2003;270(6):1154–63.

    Article  PubMed  CAS  Google Scholar 

  30. Liu X, Ma B, Malik AB, Tang H, Yang T, Sun B, et al. Bidirectional regulation of neutrophil migration by mitogen-activated protein kinases. Nat Immunol. 2012;13(5):457–64.

    Article  PubMed  CAS  Google Scholar 

  31. Sakamoto M, Arawaka S, Hara S, Sato H, Cui C, Machiya Y, et al. Contribution of endogenous G-protein-coupled receptor kinases to Ser129 phosphorylation of alpha-synuclein in HEK293 cells. Biochem Biophys Res Commun. 2009;384(3):378–82.

    Article  PubMed  CAS  Google Scholar 

  32. Kahsai AW, Zhu S, Fenteany G. G protein-coupled receptor kinase 2 activates radixin, regulating membrane protrusion and motility in epithelial cells. Biochim Biophys Acta. 2010;1803(2):300–10.

    Article  PubMed  CAS  Google Scholar 

  33. Cant SH, Pitcher JA. G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol Biol Cell. 2005;16(7):3088–99.

    Article  PubMed  CAS  Google Scholar 

  34. Tesmer VM, Kawano T, Shankaranarayanan A, Kozasa T, Tesmer JJ. Snapshot of activated G proteins at the membrane: the Galphaq-GRK2-Gbetagamma complex. Science. 2005;310(5754):1686–90.

    Article  PubMed  CAS  Google Scholar 

  35. Lodowski DT, Pitcher JA, Capel WD, Lefkowitz RJ, Tesmer JJ. Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science. 2003;300(5623):1256–62.

    Article  PubMed  CAS  Google Scholar 

  36. Jaber M, Koch WJ, Rockman H, Smith B, Bond RA, Sulik KK, et al. Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci USA. 1996;93(23):12974–9.

    Article  PubMed  CAS  Google Scholar 

  37. Gainetdinov RR, Bohn LM, Sotnikova TD, Cyr M, Laakso A, Macrae AD, et al. Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. Neuron. 2003;38(2):291–303.

    Article  PubMed  CAS  Google Scholar 

  38. Lyubarsky AL, Chen C, Simon MI, Pugh EN Jr. Mice lacking G-protein receptor kinase 1 have profoundly slowed recovery of cone-driven retinal responses. J Neurosci. 2000;20(6):2209–17.

    PubMed  CAS  Google Scholar 

  39. Peppel K, Boekhoff I, McDonald P, Breer H, Caron MG, Lefkowitz RJ. G protein-coupled receptor kinase 3 (GRK3) gene disruption leads to loss of odorant receptor desensitization. J Biol Chem. 1997;272(41):25425–8.

    Article  PubMed  CAS  Google Scholar 

  40. Walker JK, Gainetdinov RR, Feldman DS, McFawn PK, Caron MG, Lefkowitz RJ, et al. G protein-coupled receptor kinase 5 regulates airway responses induced by muscarinic receptor activation. Am J Physiol Lung Cell Mol Physiol. 2004;286(2):L312–9.

    Article  PubMed  CAS  Google Scholar 

  41. Chen Y, Sasai N, Ma G, Yue T, Jia J, Briscoe J, et al. Sonic Hedgehog dependent phosphorylation by CK1alpha and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol. 2011;9(6):e1001083.

    Article  PubMed  CAS  Google Scholar 

  42. Fusco A, Santulli G, Sorriento D, Cipolletta E, Garbi C, Dorn GW 2nd, et al. Mitochondrial localization unveils a novel role for GRK2 in organelle biogenesis. Cell Signal. 2011;24(2):468–75.

    Article  PubMed  Google Scholar 

  43. Iaccarino G, Barbato E, Cipolletta E, De Amicis V, Margulies KB, Leosco D, et al. Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure. Eur Heart J. 2005;26(17):1752–8.

    Article  PubMed  CAS  Google Scholar 

  44. Iacovelli L, Franchetti R, Masini M, De Blasi A. GRK2 and beta-arrestin 1 as negative regulators of thyrotropin receptor-stimulated response. Mol Endocrinol. 1996;10(9):1138–46.

    Article  PubMed  CAS  Google Scholar 

  45. Ferrer-Alcon M, La Harpe R, Garcia-Sevilla JA. Decreased immunodensities of micro-opioid receptors, receptor kinases GRK 2/6 and beta-arrestin-2 in postmortem brains of opiate addicts. Brain Res Mol Brain Res. 2004;121(1–2):114–22.

    Article  PubMed  CAS  Google Scholar 

  46. Mak JC, Chuang TT, Harris CA, Barnes PJ. Increased expression of G protein-coupled receptor kinases in cystic fibrosis lung. Eur J Pharmacol. 2002;436(3):165–72.

    Article  PubMed  CAS  Google Scholar 

  47. Obrenovich ME, Morales LA, Cobb CJ, Shenk JC, Mendez GM, Fischbach K, et al. Insights into cerebrovascular complications and Alzheimer disease through the selective loss of GRK2 regulation. J Cell Mol Med. 2009;13(5):853–65.

    Article  PubMed  CAS  Google Scholar 

  48. Vroon A, Kavelaars A, Limmroth V, Lombardi MS, Goebel MU, Van Dam AM, et al. G protein-coupled receptor kinase 2 in multiple sclerosis and experimental autoimmune encephalomyelitis. J Immunol. 2005;174(7):4400–6.

    PubMed  CAS  Google Scholar 

  49. Lombardi MS, Kavelaars A, Cobelens PM, Schmidt RE, Schedlowski M, Heijnen CJ. Adjuvant arthritis induces down-regulation of G protein-coupled receptor kinases in the immune system. J Immunol. 2001;166(3):1635–40.

    PubMed  CAS  Google Scholar 

  50. King DW, Steinmetz R, Wagoner HA, Hannon TS, Chen LY, Eugster EA, et al. Differential expression of GRK isoforms in nonmalignant and malignant human granulosa cells. Endocrine. 2003;22(2):135–42.

    Article  PubMed  CAS  Google Scholar 

  51. Gros R, Benovic JL, Tan CM, Feldman RD. G-protein-coupled receptor kinase activity is increased in hypertension. J Clin Invest. 1997;99(9):2087–93.

    Article  PubMed  CAS  Google Scholar 

  52. Borkowski KR, Gros R, Schneider H. Vascular beta-adrenoceptor-mediated responses in hypertension and ageing in rats. J Auton Pharmacol. 1992;12(6):389–401.

    Article  PubMed  CAS  Google Scholar 

  53. Gros R, Chorazyczewski J, Meek MD, Benovic JL, Ferguson SS, Feldman RD. G-Protein-coupled receptor kinase activity in hypertension: increased vascular and lymphocyte G-protein receptor kinase-2 protein expression. Hypertension. 2000;35(1 Pt 1):38–42.

    Article  PubMed  CAS  Google Scholar 

  54. Eckhart AD, Ozaki T, Tevaearai H, Rockman HA, Koch WJ. Vascular-targeted overexpression of G protein-coupled receptor kinase-2 in transgenic mice attenuates beta-adrenergic receptor signaling and increases resting blood pressure. Mol Pharmacol. 2002;61(4):749–58.

    Article  PubMed  CAS  Google Scholar 

  55. Morris GE, Nelson CP, Brighton PJ, Standen NB, Challiss RA, Willets JM. Arrestins 2 and 3 differentially regulate ETA and P2Y2 receptor-mediated cell signaling and migration in arterial smooth muscle. Am J Physiol Cell Physiol. 2012;302(5):C723–34.

    Article  PubMed  CAS  Google Scholar 

  56. Erbel R, Lehmann N, Mohlenkamp S, Churzidse S, Bauer M, Kalsch H, et al. Subclinical coronary atherosclerosis predicts cardiovascular risk in different stages of hypertension: result of the Heinz Nixdorf Recall Study. Hypertension. 2012;59(1):44–53.

    Article  PubMed  CAS  Google Scholar 

  57. Liu S, Premont RT, Kontos CD, Zhu S, Rockey DC. A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat Med. 2005;11(9):952–8.

    Article  PubMed  CAS  Google Scholar 

  58. Taguchi K, Kobayashi T, Matsumoto T, Kamata K. Dysfunction of endothelium-dependent relaxation to insulin via PKC-mediated GRK2/Akt activation in aortas of ob/ob mice. Am J Physiol Heart Circ Physiol. 2011;301(2):H571–83.

    Article  PubMed  CAS  Google Scholar 

  59. Leosco D, Iaccarino G, Cipolletta E, De Santis D, Pisani E, Trimarco V, et al. Exercise restores beta-adrenergic vasorelaxation in aged rat carotid arteries. Am J Physiol Heart Circ Physiol. 2003;285(1):H369–74.

    PubMed  CAS  Google Scholar 

  60. Taguchi K, Matsumoto T, Kamata K, Kobayashi T. Inhibitor of G protein-coupled receptor kinase 2 normalizes vascular endothelial function in type 2 diabetic mice by improving beta-arrestin 2 translocation and ameliorating Akt/eNOS signal dysfunction. Endocrinology. 2012;153(7):2985–96.

    Article  PubMed  CAS  Google Scholar 

  61. Napolitano R, Campanile A, Sarno L, Anastasio A, Maruotti GM, Morlando M, et al. GRK2 levels in umbilical arteries of pregnancies complicated by gestational hypertension and preeclampsia. Am J Hypertens. 2012;25(3):366–71.

    Article  PubMed  CAS  Google Scholar 

  62. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.

    PubMed  CAS  Google Scholar 

  63. Rana S, Powe CE, Salahuddin S, Verlohren S, Perschel FH, Levine RJ, et al. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation. 2012;125(7):911–9.

    Article  PubMed  CAS  Google Scholar 

  64. Santulli G, Lombardi A, Sorriento D, Anastasio A, Del Giudice C, Formisano P, et al. Age-related impairment in insulin release: the essential role of beta(2)-adrenergic receptor. Diabetes. 2012;61(3):692–701.

    Article  PubMed  CAS  Google Scholar 

  65. De Boer MP, Meijer RI, Wijnstok NJ, Jonk AM, Houben AJ, Stehouwer CD, et al. Microvascular dysfunction: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Microcirculation. 2012;19(1):5–18.

    Article  PubMed  Google Scholar 

  66. Usui I, Imamura T, Babendure JL, Satoh H, Lu JC, Hupfeld CJ, et al. G protein-coupled receptor kinase 2 mediates endothelin-1-induced insulin resistance via the inhibition of both Galphaq/11 and insulin receptor substrate-1 pathways in 3T3-L1 adipocytes. Mol Endocrinol. 2005;19(11):2760–8.

    Article  PubMed  CAS  Google Scholar 

  67. Ciccarelli M, Chuprun JK, Rengo G, Gao E, Wei Z, Peroutka RJ, et al. G protein-coupled receptor kinase 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. Circulation. 2011;123(18):1953–62.

    Article  PubMed  CAS  Google Scholar 

  68. Cipolletta E, Campanile A, Santulli G, Sanzari E, Leosco D, Campiglia P, et al. The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance. Cardiovasc Res. 2009;84(3):407–15.

    Article  PubMed  CAS  Google Scholar 

  69. Santulli G, Campanile A, Spinelli L, Assante di Panzillo E, Assante di Panzillo E, Ciccarelli M, Trimarco B, et al. G protein-coupled receptor kinase 2 in patients with acute myocardial infarction. Am J Cardiol. 2011;107(8):1125–30.

    Article  PubMed  CAS  Google Scholar 

  70. Feldman RD. Deactivation of vasodilator responses by GRK2 overexpression: a mechanism or the mechanism for hypertension? Mol Pharmacol. 2002;61(4):707–9.

    Article  PubMed  CAS  Google Scholar 

  71. Zhu X, Brown B, Li A, Mears AJ, Swaroop A, Craft CM. GRK1-dependent phosphorylation of S and M opsins and their binding to cone arrestin during cone phototransduction in the mouse retina. J Neurosci. 2003;23(14):6152–60.

    PubMed  CAS  Google Scholar 

  72. Zhao X, Yokoyama K, Whitten ME, Huang J, Gelb MH, Palczewski K. A novel form of rhodopsin kinase from chicken retina and pineal gland. FEBS Lett. 1999;454(1–2):115–21.

    Article  PubMed  CAS  Google Scholar 

  73. Arnon TI, Xu Y, Lo C, Pham T, An J, Coughlin S, et al. GRK2-dependent S1PR1 desensitization is required for lymphocytes to overcome their attraction to blood. Science. 2011;333(6051):1898–903.

    Article  PubMed  CAS  Google Scholar 

  74. Shahid G, Hussain T. GRK2 negatively regulates glycogen synthesis in mouse liver FL83B cells. J Biol Chem. 2007;282(28):20612–20.

    Article  PubMed  CAS  Google Scholar 

  75. Lymperopoulos A, Rengo G, Gao E, Ebert SN, Dorn GW 2nd, Koch WJ. Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem. 2010;285(21):16378–86.

    Article  PubMed  CAS  Google Scholar 

  76. Taneja M, Salim S, Saha K, Happe HK, Qutna N, Petty F, et al. Differential effects of inescapable stress on locus coeruleus GRK3, alpha2-adrenoceptor and CRF1 receptor levels in learned helpless and non-helpless rats: a potential link to stress resilience. Behav Brain Res. 2011;221(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  77. von Lueder TG, Gravning J, How OJ, Vinge LE, Ahmed MS, Krobert KA, et al. Cardiomyocyte-restricted inhibition of G protein-coupled receptor kinase-3 (GRK3) attenuates cardiac dysfunction after chronic pressure overload. Am J Physiol Heart Circ Physiol. 2012;303(1):H66–74.

    Article  PubMed  CAS  Google Scholar 

  78. Harris RC. Abnormalities in renal dopamine signaling and hypertension: the role of GRK4. Curr Opin Nephrol Hypertens. 2012;21(1):61–5.

    Article  PubMed  CAS  Google Scholar 

  79. Liu C, Xi B. Pooled analyses of the associations of polymorphisms in the GRK4 and EMILIN1 genes with hypertension risk. Int J Med Sci. 2012;9(4):274–9.

    Article  PubMed  Google Scholar 

  80. Sorriento D, Santulli G, Fusco A, Anastasio A, Trimarco B, Iaccarino G. Intracardiac injection of AdGRK5-NT reduces left ventricular hypertrophy by inhibiting NF-kappaB-dependent hypertrophic gene expression. Hypertension. 2010;56(4):696–704.

    Article  PubMed  CAS  Google Scholar 

  81. Cheng S, Li L, He S, Liu J, Sun Y, He M, et al. GRK5 deficiency accelerates {beta}-amyloid accumulation in Tg2576 mice via impaired cholinergic activity. J Biol Chem. 2010;285(53):41541–8.

    Article  PubMed  CAS  Google Scholar 

  82. Islam KN, Koch WJ. Involvement of nuclear factor kappaB (NF-kappaB) signaling pathway in regulation of cardiac G protein-coupled receptor kinase 5 (GRK5) expression. J Biol Chem. 2012;287(16):12771–8.

    Article  PubMed  CAS  Google Scholar 

  83. Eijkelkamp N, Heijnen CJ, Carbajal AG, Willemen HL, Wang H, Minett MS, et al. GRK6 acts as a critical regulator of cytokine-induced hyperalgesia by promoting PI3kinase- and inhibiting p38-signaling. Mol Med. 2012;18(1):556–64.

    PubMed  CAS  Google Scholar 

  84. Tiedemann RE, Zhu YX, Schmidt J, Yin H, Shi CX, Que Q, et al. Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-restricted kinase, GRK6. Blood. 2010;115(8):1594–604.

    Article  PubMed  CAS  Google Scholar 

  85. Ahmed MR, Berthet A, Bychkov E, Porras G, Li Q, Bioulac BH, et al. Lentiviral overexpression of GRK6 alleviates L-dopa-induced dyskinesia in experimental Parkinson’s disease. Sci Transl Med. 2010;2(28):28ra.

    Google Scholar 

  86. Chen CK, Zhang K, Church-Kopish J, Huang W, Zhang H, Chen YJ, et al. Characterization of human GRK7 as a potential cone opsin kinase. Mol Vis. 2001;7:305–13.

    PubMed  CAS  Google Scholar 

  87. Osawa S, Jo R, Weiss ER. Phosphorylation of GRK7 by PKA in cone photoreceptor cells is regulated by light. J Neurochem. 2008;107(5):1314–24.

    Article  PubMed  CAS  Google Scholar 

  88. Eckhart AD, Duncan SJ, Penn RB, Benovic JL, Lefkowitz RJ, Koch WJ. Hybrid transgenic mice reveal in vivo specificity of G protein-coupled receptor kinases in the heart. Circ Res. 2000;86(1):43–50.

    Article  PubMed  CAS  Google Scholar 

  89. Cohn HI, Harris DM, Pesant S, Pfeiffer M, Zhou RH, Koch WJ, et al. Inhibition of vascular smooth muscle G protein-coupled receptor kinase 2 enhances alpha1D-adrenergic receptor constriction. Am J Physiol Heart Circ Physiol. 2008;295(4):H1695–704.

    Article  PubMed  CAS  Google Scholar 

  90. Koch WJ, Rockman HA, Samama P, Hamilton RA, Bond RA, Milano CA, et al. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science. 1995;268(5215):1350–3.

    Article  PubMed  CAS  Google Scholar 

  91. Rockman HA, Choi DJ, Akhter SA, Jaber M, Giros B, Lefkowitz RJ, et al. Control of myocardial contractile function by the level of beta-adrenergic receptor kinase 1 in gene-targeted mice. J Biol Chem. 1998;273(29):18180–4.

    Article  PubMed  CAS  Google Scholar 

  92. Raake PW, Zhang X, Vinge LE, Brinks H, Gao E, Jaleel N, et al. Cardiac g-protein-coupled receptor kinase 2 ablation induces a novel Ca2+ handling phenotype resistant to adverse alterations and remodeling after myocardial infarction. Circulation. 2012;125(17):2108–18.

    Article  PubMed  CAS  Google Scholar 

  93. Rockman HA, Choi DJ, Rahman NU, Akhter SA, Lefkowitz RJ, Koch WJ. Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc Natl Acad Sci USA. 1996;93(18):9954–9.

    Article  PubMed  CAS  Google Scholar 

  94. Spurney RF, Flannery PJ, Garner SC, Athirakul K, Liu S, Guilak F, et al. Anabolic effects of a G protein-coupled receptor kinase inhibitor expressed in osteoblasts. J Clin Invest. 2002;109(10):1361–71.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Santulli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santulli, G., Trimarco, B. & Iaccarino, G. G-Protein-Coupled Receptor Kinase 2 and Hypertension. High Blood Press Cardiovasc Prev 20, 5–12 (2013). https://doi.org/10.1007/s40292-013-0001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-013-0001-8

Keywords

Navigation