Skip to main content
Log in

Clinical Validation and Implementation of a Measurable Residual Disease Assay for NPM1 in Acute Myeloid Leukemia by Error-Corrected Next-Generation Sequencing

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Nucleophosmin 1 (NPM1) is one of the most commonly mutated genes in acute myeloid leukemia, with mutations observed in approximately 30% of all adult cases. The persistence of NPM1 mutations following chemotherapy is associated with a greater risk of relapse as well as a lower rate of survival, making NPM1 measurable residual disease (MRD) an informative clinical target.

Methods

Herein, we have developed a straightforward unique molecular identifier (UMI)-based amplicon next-generation sequencing method for the detection of NPM1-mutated MRD that addresses some of the limitations present in other assays.

Results

The NPM1 assay allowed for accurate counting of individual mutant and wild-type molecules down to 0.01% variant allelic frequency. In silico contamination experiments highlighted the ability of this UMI methodology to maximize specificity through dramatic reductions in sequencing/demultiplexing bleed-through error.

Conclusion

Performance and clinical utility of the NPM1 MRD assay are established via both validation experiments and analyses of live performance over 1.5 years of routine clinical service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. GIMEMA Acute Leukemia Working Party. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254–66.

    Article  CAS  Google Scholar 

  2. Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005;106(12):3747–54.

    Article  CAS  Google Scholar 

  3. Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006;107(10):4011–20.

    Article  CAS  Google Scholar 

  4. Kronke J, Bullinger L, Teleanu V, Tschurtz F, Gaidzik VI, Kuhn MW, et al. Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood. 2013;122(1):100–8.

    Article  Google Scholar 

  5. Kristensen T, Moller MB, Friis L, Bergmann OJ, Preiss B. NPM1 mutation is a stable marker for minimal residual disease monitoring in acute myeloid leukaemia patients with increased sensitivity compared to WT1 expression. Eur J Haematol. 2011;87(5):400–8.

    Article  CAS  Google Scholar 

  6. Jain P, Kantarjian H, Patel K, Faderl S, Garcia-Manero G, Benjamini O, et al. Mutated NPM1 in patients with acute myeloid leukemia in remission and relapse. Leuk Lymphoma. 2014;55(6):1337–44.

    Article  CAS  Google Scholar 

  7. Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016;374(5):422–33.

    Article  CAS  Google Scholar 

  8. Gorello P, Cazzaniga G, Alberti F, Dell’Oro MG, Gottardi E, Specchia G, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia. 2006;20(6):1103–8.

    Article  CAS  Google Scholar 

  9. Noguera NI, Ammatuna E, Zangrilli D, Lavorgna S, Divona M, Buccisano F, et al. Simultaneous detection of NPM1 and FLT3-ITD mutations by capillary electrophoresis in acute myeloid leukemia. Leukemia. 2005;19(8):1479–82.

    Article  CAS  Google Scholar 

  10. Kinde I, Bettegowda C, Wang Y, Wu J, Agrawal N, Shih Ie M, et al. Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers. Sci Transl Med. 2013;5(167):167ra4.

    Article  Google Scholar 

  11. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.

    Article  Google Scholar 

  12. Salipante SJ, Fromm JR, Shendure J, Wood BL, Wu D. Detection of minimal residual disease in NPM1-mutated acute myeloid leukemia by next-generation sequencing. Mod Pathol. 2014;27(11):1438–46.

    Article  CAS  Google Scholar 

  13. Malmberg EB, Stahlman S, Rehammar A, Samuelsson T, Alm SJ, Kristiansson E, et al. Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next-generation sequencing. Eur J Haematol. 2017;98(1):26–37.

    Article  CAS  Google Scholar 

  14. Mencia-Trinchant N, Hu Y, Alas MA, Ali F, Wouters BJ, Lee S, et al. Minimal residual disease monitoring of acute myeloid leukemia by massively multiplex digital PCR in patients with NPM1 mutations. J Mol Diagn. 2017;19(4):537–48.

    Article  CAS  Google Scholar 

  15. SeqPrep. https://github.com/jstjohn/SeqPrep. Accessed 15 Sep 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren L. Ritterhouse.

Ethics declarations

Conflict of interest

JPS has received consulting fees for molecular diagnostics advisory boards from Bristol Myers Squibb, Novartis, Merck, AstraZeneca, and AbbVie, and has received grant funds from AbbVie for development of other NGS-based measurable residual disease assays. LLR has received honoraria for molecular diagnostics advisory boards from Bristol Myers Squibb, AbbVie, Loxo Oncology, and Personal Genome Diagnostics. MP, CJZ, MNW, RP, CMH, NZJ, MJH, RH, PW, LVF, and SK have no conflicts of interest to declare.

Funding

No funding was received for the conduct of this study.

Ethical approval and informed consent

Informed consent was waived as only retrospective blood and bone marrow samples obtained for diagnostic purposes were used for this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritterhouse, L.L., Parilla, M., Zhen, C.J. et al. Clinical Validation and Implementation of a Measurable Residual Disease Assay for NPM1 in Acute Myeloid Leukemia by Error-Corrected Next-Generation Sequencing. Mol Diagn Ther 23, 791–802 (2019). https://doi.org/10.1007/s40291-019-00436-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-019-00436-8

Navigation