Skip to main content

Advertisement

Log in

Recent Progress in Functional Genomic Studies of Depression and Suicide

  • Epigenetics (J Davie, Section Editor)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

According to the WHO approximately 350 million individuals worldwide are affected by depression, making it the global leading cause of disability. Depression also closely associates with suicide. The last three decades have seen a wealth of genetic studies aiming to identify genes associated with depression and suicidal behavior, whereas more recent advances in our understanding of how the genome is functionally regulated, coupled with developments in high-throughput sequencing methods, have led to an increased capacity and interest in the study of functional genomics. These studies provide us with a unique opportunity to understand how the brain is regulated and to more directly investigate genomic processes that may be at fault in the depressed and suicidal brain. In this review, we discuss recent advances in studies investigating transcriptomic and epigenomic studies of depression and suicide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

GWAS:

Genome-wide association studies

GEWIS:

Genome-environment-wide interaction studies

mCH:

Non-CpG methylation

MDD:

Major depression

dlPFC:

Dorsolateral prefrontal cortex

SNP:

Single nucleotide polymorphism

UTR:

Untranslated region

ncRNA:

Non-coding RNA

miRNA:

MicroRNA

LCM:

Laser capture microdissection

FACS:

Fluorescence-activated cell sorting

MBD-seq:

Methyl-CpG-binding domain protein sequencing

DMRs:

Differentially methylated regions

References

Papers of Particular Interest, Published recently, Have Been Highlighted as: • Of importance •• Of major importance

  1. • Turecki G, Brent DA. Suicide and suicidal behaviour. Lancet. 2016;387(10024):1227–39. A model of suicide and suicidal behaviour

    Article  PubMed  Google Scholar 

  2. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. American Journal of Psychiatry AJP. 2000;157(10):1552–62.

    Article  CAS  Google Scholar 

  3. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci. 2009;106(23):9362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bosker FJ, Hartman CA, Nolte IM, Prins BP, Terpstra P, Posthuma D, Nolen WA. Poor replication of candidate genes for major depressive disorder using genome-wide association data. Molecular Psychiatry Mol Psychiatry. 2010;16(5):516–32.

    Article  PubMed  CAS  Google Scholar 

  5. Dunn EC, Brown RC, Dai Y, Rosand J, Nugent NR, Amstadter AB, Smoller JW. Genetic determinants of depression. Harvard Review of Psychiatry. 2015;23(1):1–18.

    Article  PubMed  PubMed Central  Google Scholar 

  6. • Turecki G. The molecular bases of the suicidal brain. Nature Reviews Neuroscience Nat Rev Neurosci. 2014;15(12):802–16. A review on the molecular neurobiology of suicide

    Article  CAS  PubMed  Google Scholar 

  7. • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Esteller M. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci. 2005;102(30):10604–9. A study showing accumulating epigenetic differences between monozygotic twins despite shared genetic code

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomas D. Gene–environment-wide association studies: emerging approaches. Nat Rev Genet Nature Reviews Genetics. 2010;11(4):259–72.

    Article  CAS  PubMed  Google Scholar 

  9. Thomas D. Methods for investigating gene-environment interactions in candidate pathway and genome-wide association studies. Annu Rev Public Health Annual Review of Public Health. 2010;31(1):21–36.

    Article  PubMed  Google Scholar 

  10. Dunn EC, Wiste A, Radmanesh F, Almli LM, Gogarten SM, Sofer T, Smoller JW. Genome-wide association study (Gwas) and genome-wide by environment interaction study (Gweis) of depressive symptoms in African American and Hispanic/Latina women. Depression and Anxiety Depress Anxiety. 2016;33(4):265–80.

    Article  CAS  PubMed  Google Scholar 

  11. Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature. 2010;465(7299):721–7.

    Article  CAS  PubMed  Google Scholar 

  12. Waddington CH. Organisers & genes. Cambridge: University Press; 1940.

    Google Scholar 

  13. Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–8.

    Article  CAS  PubMed  Google Scholar 

  14. Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. The Lancet Neurology. 2009;8(11):1056–72.

    Article  CAS  PubMed  Google Scholar 

  15. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol Nature Biotechnology. 2010;28(10):1057–68.

    Article  CAS  PubMed  Google Scholar 

  16. •• Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Ecker JR. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341(6146):1237905. An important study characterizing several epigenetic marks in neurons throughout development

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kulis M, Esteller M. DNA methylation and cancer. Adv Genet. 2010;70:27–56.

    PubMed  Google Scholar 

  18. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89–97.

    Article  CAS  PubMed  Google Scholar 

  19. Deng G, Chen A, Pong E, Kim YS. Methylation in hMLH1 promoter interferes with its binding to transcription factor CBF and inhibits gene expression. Oncogene. 2001;20(48):7120–7.

    Article  CAS  PubMed  Google Scholar 

  20. Oda S, Fukami T, Yokoi T, Nakajima M. Epigenetic regulation is a crucial factor in the repression of UGT1A1 expression in the human kidney. Drug Metab Dispos. 2013;41(10):1738–43.

    Article  CAS  PubMed  Google Scholar 

  21. Domcke S, Bardet AF, Ginno PA, Hartl D, Burger L, Schübeler D. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature. 2015;528(7583):575–9.

    Article  CAS  PubMed  Google Scholar 

  22. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Costello JF. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Turecki G, Ota VK, Belangero SI, Jackowski A, Kaufman J. Early life adversity, genomic plasticity, and psychopathology. The Lancet Psychiatry. 2014;1(6):461–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lutz P, Almeida D, Fiori L, Turecki G. Childhood maltreatment and stress-related psychopathology: the epigenetic memory hypothesis. CPD Current Pharmaceutical Design. 2015;21(11):1413–7.

    Article  CAS  Google Scholar 

  25. Lutz P, Turecki G. DNA methylation and childhood maltreatment: from animal models to human studies. Neuroscience. 2014;264:142–56. doi:10.1016/j.neuroscience.2013.07.069.

    Article  CAS  PubMed  Google Scholar 

  26. Talens RP, Boomsma DI, Tobi EW, Kremer D, Jukema JW, Willemsen G, Heijmans BT. Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J. 2010;24(9):3135–44.

    Article  CAS  PubMed  Google Scholar 

  27. Flanagan JM, Brook MN, Orr N, Tomczyk K, Coulson P, Fletcher O, Garcia-Closas M. Temporal stability and determinants of white blood cell DNA methylation in the breakthrough generations study. Cancer Epidemiol Biomark Prev. 2014;24(1):221–9.

    Article  CAS  Google Scholar 

  28. • Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT, Kohlbacher O, Meissner A. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500(7463):477–81. A study conducting whole-genome bisulfite sequencing across 30 diverse human cell and tissue types

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ladd-Acosta C, Pevsner J, Sabunciyan S, Yolken RH, Webster MJ, Dinkins T, Feinberg AP. DNA methylation signatures within the human brain. Am J Hum Genet. 2007;81(6):1304–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghosh S, Yates AJ, Frühwald MC, Miecznikowski JC, Plass C, Smiraglia D. Tissue specific DNA methylation of CpG islands in normal human adult somatic tissues distinguishes neural from non-neural tissues. Epigenetics. 2010;5(6):527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xin Y, Chanrion B, Liu M, Galfalvy H, Costa R, Ilievski B, Haghighi F. Genome-wide divergence of DNA methylation marks in cerebral and cerebellar cortices. PLoS One. 2010;5(6) doi:10.1371/journal.pone.0011357.

  32. Liang P, Song F, Ghosh S, Morien E, Qin M, Mahmood S, Held WA. Genome-wide survey reveals dynamic widespread tissue-specific changes in DNA methylation during development. BMC Genomics. 2011;12(1):231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, Mill J. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol Genome Biology. 2012;13(6):R43.

    Article  CAS  PubMed  Google Scholar 

  34. Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, Myers RM. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013;23(3):555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Turecki G, Meaney MJ. Effects of the social environment and stress on glucocorticoid receptor gene methylation: a systematic review. Biol Psychiatry. 2016;79(2):87–96. A meta-analysis summarizing studies that show a robust effect of childhood maltreatment on glucocorticoid receptor methylation

    Article  CAS  PubMed  Google Scholar 

  36. Walton E, Hass J, Liu J, Roffman JL, Bernardoni F, Roessner V, Ehrlich S. Correspondence of DNA methylation between blood and brain tissue and its application to schizophrenia research. SCHBUL Schizophrenia Bulletin. 2015;42(2):406–14.

    Article  Google Scholar 

  37. Uddin M, Koenen KC, Aiello AE, Wildman DE, Santos RD, Galea S. Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychological Medicine Psychol Med. 2010;41(05):997–1007.

    Article  PubMed  Google Scholar 

  38. Davies MN, Krause L, Bell JT, Gao F, Ward KJ, Wu H, Wang J. Hypermethylation in the ZBTB20 gene is associated with major depressive disorder. Genome Biol Genome Biology. 2014;15(4):R56.

    Article  PubMed  CAS  Google Scholar 

  39. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64(2):238–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Januar V, Ancelin M, Ritchie K, Saffery R, Ryan J. BDNF promoter methylation and genetic variation in late-life depression. Translational Psychiatry Transl Psychiatry. 2015;5(8):e619.

    Article  CAS  PubMed  Google Scholar 

  41. Kang H, Kim J, Bae K, Kim S, Shin I, Kim H, Yoon J. Longitudinal associations between BDNF promoter methylation and late-life depression. Neurobiol Aging. 2015;36(4):1764.

    Article  PubMed  CAS  Google Scholar 

  42. Kim J, Kang H, Kim S, Kim S, Shin I, Kim H, Yoon J. BDNF promoter methylation associated with suicidal ideation in patients with breast cancer. The International Journal of Psychiatry in Medicine Int J Psychiatry Med. 2015;49(1):75–94.

    Article  PubMed  Google Scholar 

  43. Kang H, Kim J, Lee J, Kim S, Bae K, Kim S, Yoon J. BDNF promoter methylation and suicidal behavior in depressive patients. J Affect Disord. 2013;151(2):679–85.

    Article  CAS  PubMed  Google Scholar 

  44. Na K, Won E, Kang J, Chang HS, Yoon H, Tae WS, Ham B. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder. Sci Rep Scientific Reports. 2016;6:21089.

    Article  CAS  PubMed  Google Scholar 

  45. Molendijk ML, Bus BA, Spinhoven P, Penninx BW, Kenis G, Prickaerts J, Elzinga BM. Serum levels of brain-derived neurotrophic factor in major depressive disorder: state–trait issues, clinical features and pharmacological treatment. Molecular Psychiatry Mol Psychiatry. 2010;16(11):1088–95.

    Article  PubMed  CAS  Google Scholar 

  46. • Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience Nat Neurosci. 2006;9(4):519–25. A study providing evidence of an important role for histone remodeling in the pathophysiology and treatment of depression

    Article  CAS  PubMed  Google Scholar 

  47. Tadić A, Wagner S, Schlicht KF, Peetz D, Borysenko L, Dreimüller N, Lieb K. The early non-increase of serum BDNF predicts failure of antidepressant treatment in patients with major depression: a pilot study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(2):415–20.

    Article  CAS  Google Scholar 

  48. Tadić A, Müller-Engling L, Schlicht KF, Kotsiari A, Dreimüller N, Kleimann A, Frieling H. Methylation of the promoter of brain-derived neurotrophic factor exon IV and antidepressant response in major depression. Mol Psychiatry. 2013;19(3):281–3.

    Article  PubMed  CAS  Google Scholar 

  49. • Lopez JP, Mamdani F, Labonte B, Beaulieu M, Yang JP, Berlim MT, Turecki G. Epigenetic regulation of BDNF expression according to antidepressant response. Molecular Psychiatry Mol Psychiatry. 2012;18(4):398–9. A discovered association between H3K27me3 at the BDNF locus, expression, and response to antidepressants

    Article  PubMed  CAS  Google Scholar 

  50. Chen ES, Ernst C, Turecki G. The epigenetic effects of antidepressant treatment on human prefrontal cortex BDNF expression. The International Journal of Neuropsychopharmacology Int J Neuropsychopharm. 2010;14(03):427–9.

    Article  CAS  Google Scholar 

  51. Byrne EM, Carrillo-Roa T, Henders AK, Bowdler L, Mcrae AF, Heath AC, Wray NR. Monozygotic twins affected with major depressive disorder have greater variance in methylation than their unaffected co-twin. Translational Psychiatry Transl Psychiatry. 2013;3(6):e269.

    Article  CAS  PubMed  Google Scholar 

  52. Malki K, Koritskaya E, Harris F, Bryson K, Herbster M, Tosto MG. Epigenetic differences in monozygotic twins discordant for major depressive disorder. Translational Psychiatry Transl Psychiatry. 2016;6(6):e839.

    Article  CAS  PubMed  Google Scholar 

  53. Córdova-Palomera A, Fatjó-Vilas M, Gastó C, Navarro V, Krebs M, Fañanás L. Genome-wide methylation study on depression: differential methylation and variable methylation in monozygotic twins. Translational Psychiatry Transl Psychiatry. 2015;5(4):e557.

    Article  PubMed  Google Scholar 

  54. Fuchsova B, Juliá AA, Rizavi H, Frasch A, Pandey G. Altered expression of neuroplasticity-related genes in the brain of depressed suicides. Neuroscience. 2015;299:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hercher C, Canetti L, Turecki G, Mechawar N. Anterior cingulate pyramidal neurons display altered dendritic branching in depressed suicides. J Psychiatr Res. 2010;44(5):286–93.

    Article  PubMed  Google Scholar 

  56. Maheu ME, Davoli MA, Turecki G, Mechawar N. Amygdalar expression of proteins associated with neuroplasticity in major depression and suicide. J Psychiatr Res. 2013;47(3):384–90.

    Article  PubMed  Google Scholar 

  57. Monsalve EM, García-Gutiérrez MS, Navarrete F, Giner S, Laborda J, Manzanares J. Abnormal expression pattern of notch receptors, ligands, and downstream effectors in the dorsolateral prefrontal cortex and amygdala of suicidal victims. Molecular Neurobiology Mol Neurobiol. 2013;49(2):957–65.

    Article  PubMed  CAS  Google Scholar 

  58. Zhurov V, Stead JD, Merali Z, Palkovits M, Faludi G, Schild-Poulter C, Poulter MO. Molecular pathway reconstruction and analysis of disturbed gene expression in depressed individuals who died by suicide. PLoS One. 2012;7(10) doi:10.1371/journal.pone.0047581.

  59. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, Duman RS. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nature Medicine Nat Med. 2012;18(9):1413–7.

    Article  CAS  PubMed  Google Scholar 

  60. Kékesi KA, Juhász G, Simor A, Gulyássy P, Szegő ÉM, Hunyadi-Gulyás É, Czurkó A. Altered functional protein networks in the prefrontal cortex and amygdala of victims of suicide. PLoS One. 2012;7(12) doi:10.1371/journal.pone.0050532.

  61. Chang L, Jamain S, Lin C, Rujescu D, Tseng GC, Sibille E. A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies. PLoS One. 2014;9(3) doi:10.1371/journal.pone.0090980.

  62. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, O’Donovan MC. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506(7487):179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tang A, Chen H, Li TP, Metzbower SR, Macgillavry HD, Blanpied TA. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature. 2016; doi:10.1038/nature19058.

    Google Scholar 

  64. Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V, Turecki G. Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One. 2009;4(8) doi:10.1371/journal.pone.0006585.

  65. Klempan TA, Sequeira A, Canetti L, Lalovic A, Ernst C, Ffrench-Mullen J, Turecki G. Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression. Molecular Psychiatry Mol Psychiatry. 2007;14(2):175–89.

    Article  PubMed  CAS  Google Scholar 

  66. Yin, H., Pantazatos, S. P., Galfalvy, H., Huang, Y., Rosoklija, G. B., Dwork, A. J., Mann, J. J. (2016). A pilot integrative genomics study of GABA and glutamate neurotransmitter systems in suicide, suicidal behavior, and major depressive disorder.

  67. Giorgetti M, Tecott LH. Contributions of 5-HT2C receptors to multiple actions of central serotonin systems. Eur J Pharmacol. 2004;488(1–3):1–9.

    Article  CAS  PubMed  Google Scholar 

  68. Werry TD, Loiacono R, Sexton PM, Christopoulos A. RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. Pharmacol Ther. 2008;119(1):7–23.

    Article  CAS  PubMed  Google Scholar 

  69. Dracheva S, Patel N, Woo DA, Marcus SM, Siever LJ, Haroutunian V. Increased serotonin 2C receptor mRNA editing: a possible risk factor for suicide. Molecular Psychiatry Mol Psychiatry. 2007;13(11):1001–10.

    Article  PubMed  CAS  Google Scholar 

  70. Dracheva S, Chin B, Haroutunian V. Altered serotonin 2C receptor RNA splicing in suicide: association with editing. Neuroreport. 2008;19(3):379–82.

    Article  CAS  PubMed  Google Scholar 

  71. Lyddon R, Dwork AJ, Keddache M, Siever LJ, Dracheva S. Serotonin 2c receptor RNA editing in major depression and suicide. The World Journal of Biological Psychiatry. 2012;14(8):590–601.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Narzo AF, Kozlenkov A, Roussos P, Hao K, Hurd Y, Lewis DA, Dracheva S. A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide. Hum Mol Genet. 2014;23(18):4801–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Sequeira A, Gwadry FG, Ffrench-Mullen JM, Canetti L, Gingras Y, Casero RA, Turecki G. Implication of SSAT by gene expression and genetic variation in suicide and major depression. Arch Gen Psychiatry Archives of General Psychiatry. 2006;63(1):35. doi:10.1001/archpsyc.63.1.35.

    Article  CAS  PubMed  Google Scholar 

  74. Sequeira A, Klempan T, Canetti L, Ffrench-Mullen J, Benkelfat C, Rouleau GA, Turecki G. Patterns of gene expression in the limbic system of suicides with and without major depression. Molecular Psychiatry Mol Psychiatry. 2007;12(7):640–55.

    Article  CAS  PubMed  Google Scholar 

  75. Fiori LM, Mechawar N, Turecki G. Identification and characterization of spermidine/spermine N1-acetyltransferase promoter variants in suicide completers. Biol Psychiatry. 2009;66(5):460–7.

    Article  CAS  PubMed  Google Scholar 

  76. Klempan TA, Rujescu D, Mérette C, Himmelman C, Sequeira A, Canetti L, Turecki G. Profiling brain expression of the spermidine/spermine N1-acetyltransferase 1 (SAT1) gene in suicide. Am J Med Genet American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2009;150B(7):934–43.

    Article  CAS  Google Scholar 

  77. Fiori LM, Turecki G. Genetic and epigenetic influences on expression of spermine synthase and spermine oxidase in suicide completers. The International Journal of Neuropsychopharmacology Int J Neuropsychopharm. 2010;13(06):725–36.

    Article  CAS  Google Scholar 

  78. Lopez JP, Fiori LM, Gross JA, Labonte B, Yerko V, Mechawar N, Turecki G. Regulatory role of miRNAs in polyamine gene expression in the prefrontal cortex of depressed suicide completers. The International Journal of Neuropsychopharmacology Int. J. Neuropsychopharm. 2013;17(01):23–32.

    Article  CAS  Google Scholar 

  79. Pantazatos SP, Andrews SJ, Dunning-Broadbent J, Pang J, Huang Y, Arango V, Mann JJ. Isoform-level brain expression profiling of the spermidine/spermine N1-acetyltransferase1 (SAT1) gene in major depression and suicide. Neurobiol Dis. 2015;79:123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Smalheiser NR, Lugli G, Rizavi HS, Torvik VI, Turecki G, Dwivedi Y. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One. 2012;7(3) doi:10.1371/journal.pone.0033201.

  81. Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS One. 2014;9(1) doi:10.1371/journal.pone.0086469.

  82. Maussion G, Yang J, Yerko V, Barker P, Mechawar N, Ernst C, Turecki G. Regulation of a truncated form of tropomyosin-related kinase B (TrkB) by Hsa-miR-185* in frontal cortex of suicide completers. PLoS One. 2012;7(6) doi:10.1371/journal.pone.0039301.

  83. Takizawa T, Nakashima K, Namihira M, Ochiai W, Uemura A, Yanagisawa M, Taga T. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell. 2001;1(6):749–58.

    Article  CAS  PubMed  Google Scholar 

  84. Turner CA, Thompson RC, Bunney WE, Schatzberg AF, Barchas JD, Myers RM, Watson SJ. Altered choroid plexus gene expression in major depressive disorder. Frontiers in Human Neuroscience Front Hum Neurosci. 2014;8:238.

    PubMed  Google Scholar 

  85. Kerman IA, Bernard R, Bunney WE, Jones EG, Schatzberg AF, Myers RM, Thompson RC. Evidence for transcriptional factor dysregulation in the dorsal raphe nucleus of patients with major depressive disorder. Front Neurosci Frontiers in Neuroscience. 2012;6:135.

    CAS  PubMed  Google Scholar 

  86. Medina A, Watson SJ, Bunney W, Myers RM, Schatzberg A, Barchas J, Thompson RC. Evidence for alterations of the glial syncytial function in major depressive disorder. J Psychiatr Res. 2016;72:15–21.

    Article  PubMed  Google Scholar 

  87. Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Watson SJ. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Molecular Psychiatry Mol Psychiatry. 2010;16(6):634–46.

    Article  PubMed  CAS  Google Scholar 

  88. Chandley M, Szebeni K, Szebeni A, Crawford J, Stockmeier A, Turecki G, Ordway G. Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder. Journal of Psychiatry & Neuroscience J Psychiatry Neurosci. 2013;38(4):276–84.

    Article  Google Scholar 

  89. Chandley MJ, Szebeni A, Szebeni K, Crawford JD, Stockmeier CA, Turecki G, Ordway GA. Elevated gene expression of glutamate receptors in noradrenergic neurons from the locus coeruleus in major depression. The International Journal of Neuropsychopharmacology Int. J. Neuropsychopharm. 2014;17(10):1569–78.

    Article  CAS  Google Scholar 

  90. Sequeira A, Morgan L, Walsh DM, Cartagena PM, Choudary P, Li J, Vawter MP. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus Accumbens of mood disorders subjects that committed suicide. PLoS One. 2012;7(4):e35367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Medina A, Seasholtz AF, Sharma V, Burke S, Bunney W, Myers RM, Watson SJ. Glucocorticoid and mineralocorticoid receptor expression in the human hippocampus in major depressive disorder. J Psychiatr Res. 2013;47(3):307–14.

    Article  PubMed  Google Scholar 

  92. Pandey GN, Rizavi HS, Ren X, Dwivedi Y, Palkovits M. Region-specific alterations in glucocorticoid receptor expression in the postmortem brain of teenage suicide victims. Psychoneuroendocrinology. 2013;38(11):2628–39.

    Article  CAS  PubMed  Google Scholar 

  93. Pérez-Ortiz JM, García-Gutiérrez MS, Navarrete F, Giner S, Manzanares J. Gene and protein alterations of FKBP5 and glucocorticoid receptor in the amygdala of suicide victims. Psychoneuroendocrinology. 2013;38(8):1251–8.

    Article  PubMed  CAS  Google Scholar 

  94. Zhao J, Qi X, Gao S, Lu J, Wamelen DV, Kamphuis W, Swaab D. Different stress-related gene expression in depression and suicide. J Psychiatr Res. 2015;68:176–85.

    Article  CAS  PubMed  Google Scholar 

  95. Yin H, Galfalvy H, Pantazatos SP, Huang Y, Rosoklija GB, Dwork AJ, Mann JJ. Glucocorticoid receptor-related genes: genotype and brain gene expression relationships to suicide and major depressive disorder. Depression and Anxiety Depress Anxiety. 2016;33(6):531–40.

    Article  CAS  PubMed  Google Scholar 

  96. Herman J, Mcklveen J, Solomon M, Carvalho-Netto E, Myers B. Neural regulation of the stress response: glucocorticoid feedback mechanisms. Braz J Med Biol Res Brazilian Journal of Medical and Biological Research. 2012;45(4):292–8.

    Article  CAS  PubMed  Google Scholar 

  97. • McGowan PO, Sasaki A, D’alessio AC, Dymov S, Labonté B, Szyf M, Meaney MJ. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience Nat Neurosci. 2009;12(3):342–8. The first study pointing towards a long lasting epigenetic effect of childhood abuse in the suicidal brain

    Article  CAS  PubMed  Google Scholar 

  98. Labonte B, Yerko V, Gross J, Mechawar N, Meaney MJ, Szyf M, Turecki G. Differential glucocorticoid receptor exon 1B, 1C, and 1H expression and methylation in suicide completers with a history of childhood abuse. Biol Psychiatry. 2012;72(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  99. Ernst C, Nagy C, Kim S, Yang JP, Deng X, Hellstrom IC, Turecki G. Dysfunction of astrocyte connexins 30 and 43 in dorsal lateral prefrontal cortex of suicide completers. Biol Psychiatry. 2011;70(4):312–9.

    Article  CAS  PubMed  Google Scholar 

  100. Ernst C, Deleva V, Deng X, Sequeira A, Pomarenski A, Klempan T, Turecki G. Alternative splicing, methylation state, and expression profile of Tropomyosin-related kinase B in the frontal cortex of suicide completers. Arch Gen Psychiatry Archives of General Psychiatry. 2009;66(1):22.

    Article  CAS  PubMed  Google Scholar 

  101. • Nagy C, Suderman M, Yang J, Szyf M, Mechawar N, Ernst C, Turecki G. Astrocytic abnormalities and global DNA methylation patterns in depression and suicide. Molecular Psychiatry Mol Psychiatry. 2014;20(3):320–8. A characterization of suicide completers as low or high astrocytic gene expressers followed by subsequent analysis of global DNA methylation patterns in these subjects

    Article  PubMed  CAS  Google Scholar 

  102. • Labonté B, Suderman M, Maussion G, Lopez JP, Navarro-Sánchez L, Yerko V, Turecki G. Genome-wide methylation changes in the brains of suicide completers. American Journal of Psychiatry AJP. 2013;170(5):511–20. Genome-wide changes in methylation in the suicide brain

    Article  Google Scholar 

  103. Haghighi F, Xin Y, Chanrion B, O’Donnell AH, Ge Y, Dwork AJ, et al. Increased DNA methylation in the suicide brain. Dialogues Clin Neurosci. 2014;16(3):430–8.

    PubMed  PubMed Central  Google Scholar 

  104. Schneider E, Hajj NE, Müller F, Navarro B, Haaf T. Epigenetic dysregulation in the prefrontal cortex of suicide completers. Cytogenetic and Genome Research Cytogenet Genome Res. 2015;146(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  105. Guintivano J, Brown T, Jones M, Maher BS, Eaton WW, Payne JL, Kaminsky ZA. Identification and replication of a combined epigenetic and genetic biomarker predicting suicide and suicidal behaviors. Compr Psychiatry. 2014;171(12):1287–96.

    Google Scholar 

  106. • Kozlenkov A, Roussos P, Timashpolsky A, Barbu M, Rudchenko S, Bibikova M, Dracheva S. Differences in DNA methylation between human neuronal and glial cells are concentrated in enhancers and non-CpG sites. Nucleic Acids Res. 2013;42(1):109–27. Work advancing the use of FACS sorting in post-mortem brain for studying epigenetic differences between neurons and glia

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Kessler NJ, Baak TE, Baker MS, Laritsky E, Coarfa C, Waterland RA. CpG methylation differences between neurons and glia are highly conserved from mouse to human. Hum Mol Genet Human Molecular Genetics. 2015;25(2):223–32.

    Article  PubMed  CAS  Google Scholar 

  108. Iwamoto K, Bundo M, Ueda J, Oldham MC, Ukai W, Hashimoto E, Kato T. Neurons show distinctive DNA methylation profile and higher interindividual variations compared with non-neurons. Genome Res. 2011;21(5):688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Guintivano J, Aryee MJ, Kaminsky ZA. A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics. 2013;8(3):290–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sabunciyan, S., Aryee, M. J., Irizarry, R. A., Rongione, M., Webster, M. J., Kaufman, W. E., Consortium, G. (2012). Genome-wide DNA methylation scan in major depressive disorder. PLoS ONE, 7(4).

  111. Arion D, Corradi JP, Tang S, Datta D, Boothe F, He A, Lewis DA. Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder. Molecular Psychiatry Mol Psychiatry. 2015;20(11):1397–405.

    Article  CAS  PubMed  Google Scholar 

  112. • Macosko E, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Mccarroll S. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14. Single cell transcriptomic sequencing of 44,808 mouse retinal cells

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, Ernfors P. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nature Neuroscience Nat Neurosci. 2014;18(1):145–53.

    Article  PubMed  CAS  Google Scholar 

  114. • Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, Manno GL, Jureus A, Linnarsson S. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347(6226):1138–42. An interesting study using large-scale single-cell RNA sequencing to classify mouse somatosensory cortex and hippocampal CA1 cells into 47 molecularly distinct subclasses

    Article  CAS  PubMed  Google Scholar 

  115. • Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, Lasken RS. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc Nature Protocols. 2016;11(3):499–524. Methods aimed at sorting and sequencing single nuclei from post-mortem brain

    Article  CAS  PubMed  Google Scholar 

  116. Nichterwitz S, Chen G, Benitez JA, Yilmaz M, Storvall H, Cao M, Hedlund E. Laser capture microscopy coupled with smart-seq2 for precise spatial transcriptomic profiling. Nature Communications Nat Comms. 2016;7:12139.

    Article  CAS  Google Scholar 

  117. Tang F, Barbacioru C, Nordman E, Li B, Xu N, Bashkirov VI, Surani MA. RNA-seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc Nature Protocols. 2010;5(3):516–35.

    Article  CAS  PubMed  Google Scholar 

  118. •• Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, Zhang K. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science. 2016;352(6293):1586–90. A recent study where the authors sequenced expression from 3227 nuclei derived from six regions of the post-mortem human cortex

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Armañanzas R, Ascoli GA. Towards the automatic classification of neurons. Trends Neurosci. 2015;38(5):307–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Turecki.

Ethics declarations

Conflict of Interest

Daniel Almeida and Gustavo Turecki declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epigenetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, D., Turecki, G. Recent Progress in Functional Genomic Studies of Depression and Suicide. Curr Genet Med Rep 5, 22–34 (2017). https://doi.org/10.1007/s40142-017-0112-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-017-0112-y

Keywords

Navigation