Skip to main content

Advertisement

Log in

The PERG as a Tool for Early Detection and Monitoring of Glaucoma

  • Diagnosis and Monitoring of Glaucoma (R Kuchtey, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

The clinical management of glaucoma is currently focused on manifest stages of the diseases at which there are congruent losses of visual function and optic nerve tissue. Identification of patients at risk of developing glaucoma remains a challenge. Detection of retinal ganglion cell dysfunction in glaucoma suspects may represent a way of identifying patients at high-risk glaucoma and thus provide both a rationale and a target for treatment to change the natural history of the disease. This report provides a review of the current applications of the pattern electroretinogram (PERG) to investigate electrical responsiveness of retinal ganglion cells in early glaucoma.

Recent Findings

While the PERG technique has been in use since the 1980’s, only recently PERG methods have been developed with skin electrodes and automated analysis that expand the PERG application in the clinical setting.

Summary

The PERG may be altered at stages of glaucoma that precede losses of visual field and optic nerve tissue. PERG alterations may be progressive and reversible after IOP lowering. PERG alterations may be inducible in susceptible eyes of patients at risk of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Maffei L, Fiorentini A. Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science. 1981;211(4485):953–5.

    Article  Google Scholar 

  2. Fiorentini A, et al. The ERG in response to alternating gratings in patients with diseases of the peripheral visual pathway. Invest Ophthalmol Vis Sci. 1981;21(3):490–3.

    CAS  PubMed  Google Scholar 

  3. Zrenner E. The physiological basis of the pattern electroretinogram. In: Osborne N, Chader G, editors. Progress in retinal research. Oxford: Pergamon Press; 1990. p. 427–64.

    Google Scholar 

  4. Porciatti V., Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res, 2015.

  5. Holder GE. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res. 2001;20(4):531–61.

    Article  CAS  PubMed  Google Scholar 

  6. Porciatti V, et al. Pattern electroretinogram as a function of spatial frequency in ocular hypertension and early glaucoma. Doc Ophthalmol. 1987;65(3):349–55.

    Article  CAS  PubMed  Google Scholar 

  7. Weinstein GW, et al. The pattern electroretinogram (PERG) in ocular hypertension and glaucoma. Arch Ophthalmol. 1988;106(7):923–8.

    Article  CAS  PubMed  Google Scholar 

  8. Berninger TA, Arden GB. The pattern electroretinogram. Eye. 1988;2(Suppl):S257–83.

    Article  PubMed  Google Scholar 

  9. Bach M. Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol. 2001;11(Suppl 2):S41–9.

    PubMed  Google Scholar 

  10. •• Bode SF , Jehle T, Bach M. Invest Ophthalmol Vis Sci. 2011 Jun 16;52(7):4300–6. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. This longitudinal study in glaucoma suspects detected PERG changes 4 years before visual field changes

  11. Pfeiffer N, Tillmon B, Bach M. Predictive value of the pattern electroretinogram in high-risk ocular hypertension. Invest Ophthalmol Vis Sci. 1993;34(5):1710–5.

    CAS  PubMed  Google Scholar 

  12. •• Banitt MR, et al. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci. 2013;54(3):2346–52. This longitudinal study in glaucoma suspects determined that the time lag between 10% loss of PERG signal and equivalent loss of RNFL thickness was 8 years. This represents a substantial window for intervention before permanent loss of structure from glaucoma

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nesher R, et al. Steady-state pattern electroretinogram following long term unilateral administration of timolol to ocular hypertensive subjects. Doc Ophthalmol. 1990;75(2):101–9.

    Article  CAS  PubMed  Google Scholar 

  14. Colotto A, et al. Pattern electroretinogram in treated ocular hypertension: a cross-sectional study after timolol maleate therapy. Ophthalmic Res. 1995;27(3):168–77.

    Article  CAS  PubMed  Google Scholar 

  15. Falsini B, et al. Follow-up study with pattern ERG in ocular hypertension and glaucoma patients under timolol maleate treatment. Clinical Vision Sciences. 1992;7(4):341–7.

    Google Scholar 

  16. Papst N, Bopp M, Schnaudigel OE. The pattern evoked electroretinogram associated with elevated intraocular pressure. Graefes Arch Clin Exp Ophthalmol. 1984;222(1):34–7.

    Article  CAS  PubMed  Google Scholar 

  17. Ventura LM, Porciatti V. Restoration of retinal ganglion cell function in early glaucoma after intraocular pressure reduction: a pilot study. Ophthalmology. 2005;112(1):20–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sehi M, et al. Reversal of retinal ganglion cell dysfunction after surgical reduction of intraocular pressure. Ophthalmology. 2010;117(12):2329–36.

    Article  PubMed  Google Scholar 

  19. Colotto A, et al. Transiently raised intraocular pressure reveals pattern electroretinogram losses in ocular hypertension. Invest Ophthalmol Vis Sci. 1996;37(13):2663–70.

    CAS  PubMed  Google Scholar 

  20. Ventura LM, et al. Head-down posture induces PERG alterations in glaucoma suspects. Invest Ophthalmol Vis Sci. 2008;49(5):2876.

    Google Scholar 

  21. Giuffre I, et al. Pattern electroretinogram assessment during ibopamine test in ocular hypertension. Eur J Ophthalmol. 2013;23(6):819–22.

    Article  PubMed  Google Scholar 

  22. •• Porciatti V, Ventura LM. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J Neuroophthalmol. 2012;32(4):354–8. This study provides a theoretical framework for structure-function relationship in glaucoma and optic nerve degenerations

    Article  PubMed  PubMed Central  Google Scholar 

  23. Porciatti V, Ventura LM. Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology. 2004;111(1):161–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. •• Bach M, Ramharter-Sereinig A. Pattern electroretinogram to detect glaucoma: comparing the PERGLA and the PERG ratio protocols. Doc Ophthalmol. 2013;127(3):227–38. This study compares the PERGLA method to other methods for PERG recording in glaucoma

    Article  PubMed  Google Scholar 

  25. Bowd C, et al. Repeatability of pattern electroretinogram measurements using a new paradigm optimized for glaucoma detection. J Glaucoma. 2009;18(6):437–42.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bowd C, et al. Diagnostic accuracy of pattern electroretinogram optimized for glaucoma detection. Ophthalmology. 2009;116(3):437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fredette MJ, et al. Reproducibility of pattern electroretinogram in glaucoma patients with a range of severity of disease with the new glaucoma paradigm. Ophthalmology. 2008;115(6):957–63.

    Article  PubMed  Google Scholar 

  28. Yang A, Swanson WH. A new pattern electroretinogram paradigm evaluated in terms of user friendliness and agreement with perimetry. Ophthalmology. 2007;114(4):671–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bowd C, et al. Pattern electroretinogram association with spectral domain-OCT structural measurements in glaucoma. Eye (Lond). 2011;25(2):224–32.

    Article  CAS  Google Scholar 

  30. Forte R, et al. Pattern electroretinogram optimized for glaucoma screening (PERGLA) and retinal nerve fiber thickness in suspected glaucoma and ocular hypertension. Doc Ophthalmol. 2010;120(2):187–92.

    Article  PubMed  Google Scholar 

  31. Ventura LM, et al. Pattern electroretinogram abnormality and glaucoma. Ophthalmology. 2005;112(1):10–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ventura LM, et al. The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Invest Ophthalmol Vis Sci. 2006;47(9):3904–11.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ventura LM, Porciatti V. Pattern electroretinogram in glaucoma. Curr Opin Ophthalmol. 2006;17(2):196–202.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bach M, Hoffmann MB. Update on the pattern electroretinogram in glaucoma. Optom Vis Sci. 2008;85(6):386–95.

    Article  PubMed  Google Scholar 

  35. Bach M, Poloschek C. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res. 2013;353(2):287–96.

    Article  PubMed  Google Scholar 

  36. Porciatti V. Electrophysiological testing in glaucoma. Expert Rev Ophthalmol. 2007;2(5):747–54.

    Article  Google Scholar 

  37. Bach M, et al. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol. 2013;126(1):1–7.

    Article  PubMed  Google Scholar 

  38. Trick GL. Retinal potentials in patients with primary open-angle glaucoma: physiological evidence for temporal frequency tuning deficits. Invest Ophthalmol Vis Sci. 1985;26(12):1750–8.

    CAS  PubMed  Google Scholar 

  39. Bach M, Speidel-Fiaux A. Pattern electroretinogram in glaucoma and ocular hypertension. Doc Ophthalmol. 1989;73(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  40. Ventura LM, Feuer WJ, Porciatti V. Progressive loss of retinal ganglion cell function is hindered with IOP-lowering treatment in early glaucoma. Invest Ophthalmol Vis Sci. 2012;53(2):659–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ventura LM, et al. Pattern electroretinogram progression in glaucoma suspects. J Glaucoma. 2013;22(3):219–25.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Spaeth GL, Vacharat N. Provocative tests and chronic simple glaucoma. I. Effect of atropine on the water-drinking test: intimations of central regulatory control. II. Fluorescein angiography provocative test: a new approach to separation of the normal from the pathological. Br J Ophthalmol. 1972;56(3):205–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hatanaka, M., et al., Comparison of the intraocular pressure variation provoked by postural change and by the water drinking test in primary open-angle glaucoma and normal patients. J Glaucoma, 2016.

  44. Ventura LM, et al. Head-down posture induces PERG alterations in early glaucoma. J Glaucoma. 2013;22(3):255–64.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Porciatti V, Ventura LM. Physiologic significance of steady-state pattern electroretinogram losses in glaucoma: clues from simulation of abnormalities in normal subjects. J Glaucoma. 2009;18(7):535–42.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bach M, Mathieu M. Different effect of dioptric defocus vs. light scatter on the pattern electroretinogram (PERG). Doc Ophthalmol. 2004;108(1):99–106.

    Article  PubMed  Google Scholar 

  47. Ventura LM, et al. The PERG in diabetic glaucoma suspects with no evidence of retinopathy. J Glaucoma. 2010;19(4):243–7.

    PubMed  PubMed Central  Google Scholar 

  48. Holder GE. The pattern electroretinogram in anterior visual pathway dysfunction and its relationship to the pattern visual evoked potential: a personal clinical review of 743 eyes. Eye. 1997;11(Pt 6):924–34.

    Article  PubMed  Google Scholar 

  49. Sartucci F, et al. Changes in pattern electroretinograms to equiluminant red-green and blue-yellow gratings in patients with early Parkinson’s disease. J Clin Neurophysiol. 2003;20(5):375–81.

    Article  PubMed  Google Scholar 

  50. Peppe A, et al. Low contrast stimuli enhance PERG sensitivity to the visual dysfunction in Parkinson’s disease. Electroencephalogr Clin Neurophysiol. 1992;82(6):453–7.

    Article  CAS  PubMed  Google Scholar 

  51. Parisi V. Correlation between morphological and functional retinal impairment in patients affected by ocular hypertension, glaucoma, demyelinating optic neuritis and Alzheimer’s disease. Semin Ophthalmol. 2003;18(2):50–7.

    PubMed  Google Scholar 

  52. Porciatti V, Sartucci F. Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain. 1996;119(Pt 3):723–40.

    Article  PubMed  Google Scholar 

  53. Lubinski W. Electroretinogram of the “pattern” type of eyes with medium grade myopia. Klin Ocz. 1991;93(10–11):284–5.

    CAS  Google Scholar 

  54. Birch DG, et al. Pattern-reversal electroretinographic follow-up of laser photocoagulation for subfoveal neovascular lesions in age-related macular degeneration. Am J Ophthalmol. 1993;116(2):148–55.

    Article  CAS  PubMed  Google Scholar 

  55. Porciatti V, Sorokac N, Buchser W. Habituation of retinal ganglion cell activity in response to steady state pattern visual stimuli in normal subjects. Invest Ophthalmol Vis Sci. 2005;46(4):1296–302.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Porciatti, V., et al., Adaptation of the steady-state PERG in early glaucoma. J Glaucoma, 2013.

  57. Porciatti V, Ventura LM. Adaptive changes of inner retina function in response to sustained pattern stimulation. Vis Res. 2009;49(5):505–13.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Porciatti.

Ethics declarations

Conflict of Interest

Vittorio Porciatti and Lori M. Ventura declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Financial Support

NIH-NEI RO1 EY014957 (VP), NIH-NEI center grant P30 EY014801 (VP), and by an unrestricted grant to Bascom Palmer Eye Institute from Research to Prevent Blindness.

Additional information

This article is part of the Topical Collection on Diagnosis and Monitoring of Glaucoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porciatti, V., Ventura, L.M. The PERG as a Tool for Early Detection and Monitoring of Glaucoma. Curr Ophthalmol Rep 5, 7–13 (2017). https://doi.org/10.1007/s40135-017-0128-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-017-0128-1

Keywords

Navigation