Skip to main content
Log in

Honey bee (Apis mellifera) intracolonial genetic diversity influences worker nutritional status

  • Original article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Honey bee queens mate with multiple males resulting in high intracolonial genetic diversity among nestmates; a reproductive strategy known as extreme polyandry. Several studies have demonstrated the adaptive significance of extreme polyandry for overall colony performance and colony growth. Colonies that are more genetically diverse collect more pollen than colonies with less diversity. However, the effects of intracolonial genetic diversity on worker nutritional status are unknown. We created colonies headed by queens instrumentally inseminated with sperm from either 1 or 20 drones, then compared protein consumption, digestion, and uptake among nestmates. We found that nurse bees from colonies with multiple-drone-inseminated (MDI) queens consumed more pollen, had lower amounts of midgut tissue protease, and invested more protein into larvae than nurse bees from single-drone-inseminated (SDI) queens. Pollen foragers from MDI colonies had significantly higher hemolymph protein concentration than pollen foragers from SDI colonies. Differences in hemolymph protein concentration between nurses and pollen foragers were significantly smaller among MDI colonies than among SDI colonies. While intracolonial genetic diversity is correlated with increased foraging, our results suggest that this relationship may be driven in part by the elevated resource demands of nurse bees in genetically diverse colonies that consume and distribute more protein in response to the social context within the hive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alaux, C., Ducloz, F., Crauser, D., Le Conte, Y. (2010) Diet effects on honeybee immunocompetence. Biol. Lett. 6(4), 562–565

    Article  PubMed Central  PubMed  Google Scholar 

  • Baer, B., Schmid-Hempel, P. (1999) Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397, 151–154

    Article  CAS  Google Scholar 

  • Bitondi, M., Simoes, Z. (1996) The relationship between level of pollen in the diet, vitellogenin and juvenile hormone titers in Africanized Apis mellifera workers. J. Apic. Res. 35(1), 27–36

    CAS  Google Scholar 

  • Blakemore, D., Williams, S., Lehane, M.J. (1995) Protein stimulation of trypsin secretion from the opaque zone midgut cells of Stomoxys calcitrans. Comp. Biochem. Physiol., B: Biochem. Mol Biol 110(2), 301–307

    Article  Google Scholar 

  • Cappelari, F.A., Turcatto, A.P., Morais, M.M., De Jong, D. (2009) Africanized honey bees more efficiently convert protein diets into hemolymph protein than do Carniolan bees (Apis mellifera carnica). Genet. Mol. Res. 8(4), 1245–1249

    Article  CAS  PubMed  Google Scholar 

  • Chapman, N., Oldroyd, B., Hughes, W. (2007) Differential responses of honeybee (Apis mellifera) patrilines to changes in stimuli for the generalist tasks of nursing and foraging. Behav. Ecol. Sociobiol. 61(8), 1185–1194

    Article  Google Scholar 

  • Cole, B.J., Wiernasz, D.C. (1999) The selective advantage of low relatedness. Science 285, 891–893

    Article  CAS  PubMed  Google Scholar 

  • Crailsheim, K. (1986) Dependence of protein metabolism on age and season in the honeybee (Apis mellifica carnica Pollm). J. Insect Physiol. 32(7), 629–634

    Article  CAS  Google Scholar 

  • Crailsheim, K. (1990) The protein balance of the honey bee worker. Apidologie 21(5), 417–429

    Article  CAS  Google Scholar 

  • Crailsheim, K. (1991) Interadult feeding of jelly in honeybee (Apis mellifera L.) colonies. J. Comp. Physiol B 161(1), 55–60

    Article  Google Scholar 

  • Crailsheim, K. (1998) Trophallactic interactions in the adult honeybee. Apidologie 29, 97–112

    Article  Google Scholar 

  • Crailsheim, K., Schneider, L.H.W., Hrassnigg, N., Buhlmann, G., Brosch, U., Gmeinbauer, R., Schoffmann, B. (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function. J. Insect Physiol. 38(6), 409–419

    Article  Google Scholar 

  • Cremonez, T., DeJong, D., Bitondi, M. (1998) Quantification of hemolymph proteins as a fast method for testing protein diets for honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 91, 1284–1269

    Article  CAS  Google Scholar 

  • da Cruz-Landim, C., Roat, T.C., Fernadez, F.C. (2012) Virus present in the reproductive tract of asymptomatic drones of honey bee (Apis mellifera L.), and possible infection of queen during mating. Microsc. Res. Tech. 75, 986–990

    Article  PubMed  Google Scholar 

  • Dadd, R.H. (1956) Proteolytic activity of the midgut in relation to feeding in the beetles Tenebrio molitor L. and Dytiscus marginalis L. J. Exp. Biol 33(2), 311–324

    CAS  Google Scholar 

  • de Miranda, J.R., Fries, I. (2008) Venereal and vertical transmission of deformed wing virus in honeybees (Apis mellifera L.). J. Invert. Pathol. 98, 184–189

    Article  Google Scholar 

  • DeGrandi-Hoffman, G., Eckholm, B.J., Huang, M.H. (2013) A comparison of bee bread made by Africanized and European honey bees (Apis mellifera) and its effects on hemolymph protein titers. Apidologie 44(1), 52–63

    Article  Google Scholar 

  • Dreller, C. (1998) Division of labor between scouts and recruits: genetic influence and mechanisms. Behav. Ecol. Sociobiol. 43, 191–196

    Article  Google Scholar 

  • Eckholm, B.J., Anderson, K.E., Weiss, M., DeGrandi-Hoffman, G. (2011) Intracolonial genetic diversity in honeybee (Apis mellifera) colonies increases pollen foraging efficiency. Behav. Ecol. Sociobiol. 65(5), 1037–1044

    Article  Google Scholar 

  • Fluri, P., Luscher, M., Wille, H., Gerig, L. (1982) Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J. Insect Physiol. 28(1), 61–68

    Article  CAS  Google Scholar 

  • Frumhoff, P.C., Baker, J. (1988) A genetic component to division of labour within honey bee colonies. Nature 333(6171), 358–361

    Article  Google Scholar 

  • Fuchs, S., Schade, V. (1994) Lower performance in honeybee colonies of uniform paternity. Apidologie 25, 155–168

    Article  Google Scholar 

  • Giray, T., Guzmán-Novoa, E., Aron, C.W., Zelinsky, B., Fahrbach, S.E., Robinson, G.E. (2000) Genetic variation in worker temporal polyethism and colony defensiveness in the honey bee. Apis mellifera. Behav. Ecol. 11(1), 44–55

    Article  Google Scholar 

  • Goodisman, M.A.D., Kovacs, J.L., Hoffman, E.A. (2007) The significance of multiple mating in the social wasp Vespula maculifrons. Evolution 61, 2260–2267

    Article  PubMed  Google Scholar 

  • Haberl, M., Moritz, R.F.A. (1994) Estimation of intracolonial worker relationship in a honey bee colony (Apis mellifera L.) using DNA fingerprinting. Insectes Soc 41(3), 263–272

    Article  Google Scholar 

  • Huang, Z.Y., Robinson, G.E. (1992) Honeybee colony integration: worker-worker interactions mediate hormonally regulated plasticity in division of labor. Proc. Natl. Acad. Sci. USA 89(24), 11726–11729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang, Z.Y., Robinson, G.E. (1996) Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 39(3), 147–158

    Article  Google Scholar 

  • Huang, Z.Y., Robinson, G.E. (1999) Social control of division of labor in honey bee colonies. In: Detrain, C., Deneubourg, J.L., Pasteels, J.M. (eds.) Information processing in social insects, pp. 165–186. Birkhauser, Basel, Switzerland

    Chapter  Google Scholar 

  • Hughes, W.O.H., Boomsma, J.J. (2004) Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58(6), 1251–1260

    Article  PubMed  Google Scholar 

  • Hughes, W.O.H., Oldroyd, B.P., Beekman, M., Ratnieks, F.L.W. (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216

    Article  CAS  PubMed  Google Scholar 

  • Jones, J.C., Myerscough, M.R., Graham, S., Oldroyd, B.P. (2004) Honey bee nest thermoregulation: diversity promotes stability. Science 305(5682), 402–404

    Article  CAS  PubMed  Google Scholar 

  • Keller, L., Reeve, H.K. (1994) Genetic variability, queen number, and polyandry in social Hymenoptera. Evolution 48, 694–704

    Article  Google Scholar 

  • Kraus, B.F., Gerecke, E., Moritz, R.F.A. (2011) Shift work has a genetic basis in honeybee pollen foragers (Apis mellifera L.). Behav. Genet. 41, 323–328

    Article  PubMed  Google Scholar 

  • Mattila, H.R., Seeley, T.D. (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317, 362–364

    Article  CAS  PubMed  Google Scholar 

  • Mattila, H.R., Seeley, T.D. (2010) Promiscuous honeybee queens generate colonies with a critical minority of waggle-dancing foragers. Behav. Ecol. Sociobiol. 64(5), 875–889

    Article  Google Scholar 

  • Mattila, H.R., Seeley, T.D. (2011) Does a polyandrous honeybee queen improve through patriline diversity the activity of her colony’s scouting foragers? Behav. Ecol. Sociobiol. 65(4), 799–811

    Article  Google Scholar 

  • Mattila, H.R., Seeley, T.D. (2014) Extreme polyandry improves a honey bee colony’s ability to track dynamic foraging opportunities via greater activity of inspecting bees. Apidologie 45(3), 347–363

    Article  Google Scholar 

  • Müller, H.M., Catteruccia, F., Vizioli, J., Della Torre, A., Crisanti, A. (1995) Constitutive and blood meal-induced trypsin genes in Anopheles gambiae. Exp. Parasitol. 81(3), 371–385

    Article  PubMed  Google Scholar 

  • Oldroyd, B.P., Clifton, M.J., Parker, K., Wongsiri, S., Rinderer, T.E., Crozier, R.H. (1998) Evolution of mating behavior in the genus Apis and an estimate of mating frequency in Apis cerana (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 91, 700–709

    Article  CAS  Google Scholar 

  • Oldroyd, B.P., Fewell, J.H. (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22(8), 408–413

    Article  PubMed  Google Scholar 

  • Oldroyd, B.P., Rinderer, T.E., Buco, S.M. (1992a) Intra-colonial foraging specialism by honey bees (Apis mellifera) (Hymenoptera: Apidae). Behav. Ecol. Sociobiol. 30(5), 291–295

    Article  Google Scholar 

  • Oldroyd, B.P., Rinderer, T.E., Buco, S.M., Beaman, L.D. (1993) Genetic variance in honey bees for preferred foraging distance. Anim. Behav. 45(2), 323–332

    Article  Google Scholar 

  • Oldroyd, B.P., Rinderer, T.E., Harbo, J.R., Buco, S.M. (1992b) Effects of genetic diversity on honey bee (Hymenoptera: Apidae) colony performance. Ann. Entomol. Soc. 85, 335–343

    Article  Google Scholar 

  • Oster, G.F., Wilson, E.O. (1978) Caste and ecology in the social insects. Monogr. Popul. Biol. 12, 1–352

    CAS  PubMed  Google Scholar 

  • Palmer, K.A., Oldroyd, B.P. (2003) Evidence for intra-colonial genetic variance in resistance to American foulbrood of honey bees (Apis mellifera): further support for the parasite/pathogen hypothesis for the evolution of polyandry. Naturwissenschaften 90(6), 265–268

    Article  CAS  PubMed  Google Scholar 

  • Page, R.E., Laidlaw, H.H. (1988) Full sisters and super sisters: a terminological paradigm. Anim. Behav. 36(3), 944–945

    Article  Google Scholar 

  • Ponton, F., Wilson, K., Cotter, S.C., Raubenheimer, D., Simpson, S.J. (2011) Nutritional immunology: a multi-dimensional approach. PLoS Pathog. 7(12), e1002223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ribbands, C.R. (1952) Division of labour in the honeybee community. Proc. R. Soc. Lond., B: Biol. Sci 140(898), 32–43

    Article  CAS  Google Scholar 

  • Robinson, G.E. (1992) Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37(1), 637–665

    Article  CAS  PubMed  Google Scholar 

  • Robinson, G.E., Page, R.E. (1988) Genetic determination of guarding and undertaking in honey-bee colonies. Nature 333, 356–358

    Article  Google Scholar 

  • Robinson, G.E., Page, R.E. (1989) Genetic basis for division of labor in an insect society. In: Breed, M.D., Page, R.E. (eds.) The genetics of social evolution, pp. 61–80. Westview Press, Boulder, CO

    Google Scholar 

  • Schlüns, H., Moritz, R.F.A., Neumann, P., Kryger, P., Koeniger, G. (2005) Multiple nuptial flights, sperm transfer and the evolution of extreme polyandry in honeybee queens. Anim. Behav. 70, 125–131

    Article  Google Scholar 

  • Schmickl, T., Crailsheim, K. (2002) How honeybees (Apis mellifera L.) change their broodcare behaviour in response to non-foraging conditions and poor pollen conditions. Behav. Ecol. Sociobiol 51(5), 415–425

    Article  Google Scholar 

  • Schmid-Hempel, P. (1998) Parasites in social insects. Princeton Univ. Press, Princeton, NJ

    Google Scholar 

  • Schmid-Hempel, P. (2005) Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 50, 529–551

    Article  CAS  PubMed  Google Scholar 

  • Schneider, D. (2009) Physiological integration of innate immunity. In: Rolff, J., Reynolds, S. (eds.) Insect infection and immunity: evolution, ecology, and mechanisms, pp. 106–116. Oxford University Press, Oxford, UK

    Chapter  Google Scholar 

  • Schulz, D.J., Huang, Z.Y., Robinson, G.E. (1998) Effects of colony food shortage on behavioral development in honey bees. Behav. Ecol. Sociobiol. 42(5), 295–303

    Article  Google Scholar 

  • Seeley, T.D. (1985) Honeybee ecology: a study of adapatation in social life. Princeton Univ. Press, Princeton, NJ

    Book  Google Scholar 

  • Seeley, T.D., Tarpy, D.R. (2007) Queen promiscuity lowers disease within honeybee colonies. Proc. R. Soc. Lond., B: Biol. Sci 274(1606), 67–72

    Article  Google Scholar 

  • Tarpy, D.R. (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc. R. Soc. Lond. B: Biol. Sci 270(1510), 99–103

    Article  Google Scholar 

  • Tarpy, D.R., Nielsen, R., Nielsen, D.I. (2004) A scientific note on the revised estimates of paternity frequency in Apis. Insectes Soc. 51(2), 203–204

    Article  Google Scholar 

  • Tarpy, D.R., Page Jr., R.E. (2000) No behavioral control over mating frequency in queen honey bees (Apis mellifera L.). Am. Nat. 155, 820–827

    Article  PubMed  Google Scholar 

  • Tarpy, D.R., Seeley, T.D. (2006) Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens. Naturwissenschaften 93(4), 195–199

    Article  CAS  PubMed  Google Scholar 

  • Toth, A.L., Kantarovich, S., Meisel, A.F., Robinson, G.E. (2005) Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. 208, 4641–4649

    Article  PubMed  Google Scholar 

  • Toth, A.L., Robinson, G.E. (2005) Worker nutrition and division of labour in honeybees. Anim. Behav. 69(2), 427–435

    Article  Google Scholar 

  • Wiernasz, D.C., Hines, J., Parker, D.G., Cole, B.J. (2008) Mating for variety increases foraging activity in the harvester ant, Pogonomyrmex occidentalis. Mol. Ecol. 17, 1137–1144

    Article  PubMed  Google Scholar 

  • Wiernasz, D.C., Perroni, C.L., Cole, B.J. (2004) Polyandry and fitness in the western harvester ant, Pogonomyrmex occidentalis. Mol. Ecol. 13, 1601–1606

    Article  CAS  PubMed  Google Scholar 

  • Winston, M.L. (1987) The biology of the honey bee. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Zakaria, M.E. (2007) Factors affecting on the food metabolism in some honey bee races. J. Appl. Sci. Res. 3(4), 311–316

    CAS  Google Scholar 

  • Zar, J.H. (1999) Biostatistical analysis. Prentice Hall, Inc., Upper Saddle River, NJ

    Google Scholar 

Download references

Acknowledgments

We thank Tom Glenn for producing the instrumentally inseminated queens and Dave Mendes for providing colonies. We also thank the USDA-ARS Carl Hayden Bee Research Center technical staff for their help with sample collection and laboratory processing. John Bear, Vanessa Corby-Harris, Linda Eckholm, and three anonymous reviewers provided helpful feedback on the manuscript. This study complied with current guidelines and regulation concerning subject handling. The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. Eckholm.

Additional information

Handling Editor: David Tarpy

La diversité génétique à l’intérieur d’une colonie d’abeilles (Apis mellifera) influence le statut nutritionnel des ouvrières

Polyandrie extrême / nutrition / abeille / approvisionnement / protéine

Die genetische Diversität innerhalb von Völkern der Honigbiene (Apis mellifera) beeinflusst den Ernährungszustand der Arbeiterinnen

genetische Diversität innerhalb des Volks / extreme Polyandrie / Ernährung der Honigbiene

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckholm, B.J., Huang, M.H., Anderson, K.E. et al. Honey bee (Apis mellifera) intracolonial genetic diversity influences worker nutritional status. Apidologie 46, 150–163 (2015). https://doi.org/10.1007/s13592-014-0311-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-014-0311-4

Keywords

Navigation