Skip to main content
Log in

Multimodal intravascular photoacoustic and ultrasound imaging

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

The rupture of atherosclerotic plaques is the leading cause of death in developed countries. Early identification of vulnerable plaque is the essential step in preventing acute coronary events. Intravascular photoacoustic (IVPA) technology is able to visualize chemical composition of atherosclerotic plaque with high specificity and sensitivity. Integrated with intravascular ultrasound (IVUS) imaging, this multimodal intravascular IVPA/IVUS imaging technology is able to provide both structural and chemical compositions of arterial walls for detecting and characterizing atherosclerotic plaques. In this paper, we present representative multimodal IVPA/IVUS imaging systems and discuss current scientific innovations, potential limitations, and prospective improvements for characterization of coronary atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from [24]

Fig. 2

Adapted from [33]

Fig. 3

Adapted from [24]

Fig. 4

Adapted from [23]

Fig. 5

Adapted from [21]

Fig. 6

Adapted from [20]

Fig. 7

Adapted from [22, 23]. (Color figure online)

Similar content being viewed by others

References

  1. Narula J, Strauss HW. Imaging of unstable atherosclerotic lesions. Eur J Nucl Med Mol I. 2005;32:1–5.

    Article  Google Scholar 

  2. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17:1410–22.

    Article  Google Scholar 

  3. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscl Throm Vas. 2005;25:2054–61.

    Article  Google Scholar 

  4. Narula J, Strauss HW. The popcorn plaques. Nat Med. 2007;13:532–4.

    Article  Google Scholar 

  5. Meissner OA, Rieber J, Babaryka G, Oswald M, Reim S, Siebert U, et al. Intravascular optical coherence tomography: comparison with histopathology in atherosclerotic peripheral artery specimens. J Vasc Interv Radiol. 2006;17:343–9.

    Article  Google Scholar 

  6. Nissen SE, Gurley JC, Grines CL, Booth DC, Mcclure R, Berk M, et al. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary–artery disease. Circulation. 1991;84:1087–99.

    Article  Google Scholar 

  7. Li Y, Jing J, Heidari E, Zhu J, Qu Y, Chen Z. Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser. Sci Rep. 2017;7:14525.

    Article  Google Scholar 

  8. Li Y, Jing J, Qu Y, Miao Y, Zhang B, Ma T, et al. Fully integrated optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging. Biomed Opt Exp. 2017;8:1036–44.

    Article  Google Scholar 

  9. Wang HW, Langohr IM, Sturek M, Cheng JX. Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy. Arterioscl Throm Vas. 2009;29:1342–8.

    Article  Google Scholar 

  10. Lilledahl MB, Haugen OA, Davies CD, Svaasand LO. Characterization of vulnerable plaques by multiphoton microscopy. J Biomed Opt. 2007;12:044005.

    Article  Google Scholar 

  11. Marcu L. Fluorescence lifetime in cardiovascular diagnostics. J Biomed Opt. 2010;15:011106.

    Article  Google Scholar 

  12. Marcu L, Jo JA, Fang Q, Papaioannou T, Reil T, Qiao JH, et al. Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy. Atherosclerosis. 2009;204:156–64.

    Article  Google Scholar 

  13. Romer TJ, Brennan JF 3rd, Puppels GJ, Zwinderman AH, van Duinen SG, van der Laarse A, et al. Intravascular ultrasound combined with Raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries. Arterioscler Thromb Vasc Biol. 2000;20:478–83.

    Article  Google Scholar 

  14. Waxman S, Dixon SR, L’Allier P, Moses JW, Petersen JL, Cutlip D, et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques initial results of the SPECTACL study. Jacc Cardiovasc Imag. 2009;2:858–68.

    Article  Google Scholar 

  15. Wei W, Li X, Zhou QF, Shung KK, Chen ZP. Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging. J Biomed Opt. 2011;16:16001.

    Article  Google Scholar 

  16. Yuan Y, Yang S, Xing D. Preclinical photoacoustic imaging endoscope based on acousto-optic coaxial system using ring transducer array. Opt Lett. 2010;35:2266–8.

    Article  Google Scholar 

  17. Ji XR, Xiong KD, Yang SH, Xing D. Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer. Opt Exp. 2015;23:9130–6.

    Article  Google Scholar 

  18. Yang JM, Maslov K, Yang HC, Zhou QF, Shung KK, Wang LHV. Photoacoustic endoscopy. Opt Lett. 2009;34:1591–3.

    Article  Google Scholar 

  19. Hui J, Cao YC, Zhang Y, Kole A, Wang P, Yu GL, et al. Real-time intravascular photoacoustic–ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second. Sci Rep. 2017;7:1417.

    Article  Google Scholar 

  20. Cao YC, Hui J, Kole A, Wang P, Yu QH, Chen WB, et al. High-sensitivity intravascular photoacoustic imaging of lipid-laden plaque with a collinear catheter design. Sci Rep. 2016;6:25236.

    Article  Google Scholar 

  21. Wang P, Ma T, Slipchenko MN, Liang S, Hui J, Shung KK, et al. High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser. Sci Rep. 2014;4:6889.

    Article  Google Scholar 

  22. Jansen K, van der Steen AF, Wu M, van Beusekom HM, Springeling G, Li X, et al. Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis. J Biomed Opt. 2014;19:026006.

    Article  Google Scholar 

  23. Li Y, Gong X, Liu C, Lin R, Hau W, Bai X, et al. High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter. J Biomed Opt. 2015;20:065006.

    Article  Google Scholar 

  24. Piao Z, Ma T, Li J, Wiedmann MT, Huang S, Yu M, et al. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 mum. Appl Phys Lett. 2015;107:083701.

    Article  Google Scholar 

  25. Wu M, Springeling G, Lovrak M, Mastik F, Iskander-Rizk S, Wang T, et al. Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second. Biomed Opt Exp. 2017;8:943–53.

    Article  Google Scholar 

  26. Beard PC, Mills TN. Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm. Phys Med Biol. 1997;42:177–98.

    Article  Google Scholar 

  27. Li X, Wei W, Zhou QF, Shung KK, Chen ZP. Intravascular photoacoustic imaging at 35 and 80 MHz. J Biomed Opt. 2012;17:106005.

    Google Scholar 

  28. Crazzolara H, Vonmuench W, Rose C, Thiemann U, Haase KK, Ritter M, et al. Analysis of the acoustic response of vascular tissue irradiated by an ultraviolet-laser pulse. J Appl Phys. 1991;70:1847–9.

    Article  Google Scholar 

  29. Jansen K, van der Steen AF, van Beusekom HM, Oosterhuis JW, van Soest G. Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt Lett. 2011;36:597–9.

    Article  Google Scholar 

  30. Wang B, Karpiouk A, Yeager D, Amirian J, Litovsky S, Smalling R, et al. In vivo intravascular ultrasound-guided photoacoustic imaging of lipid in plaques using an animal model of atherosclerosis. Ultrasound Med Biol. 2012;38:2098–103.

    Article  Google Scholar 

  31. Wang B, Karpiouk A, Yeager D, Amirian J, Litovsky S, Smalling R, et al. Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood. Opt Lett. 2012;37:1244–6.

    Article  Google Scholar 

  32. Hui J, Yu Q, Ma T, Wang P, Cao Y, Bruning RS, et al. High-speed intravascular photoacoustic imaging at 1.7 mum with a KTP-based OPO. Biomedical. Opt Exp. 2015;6:4557–66.

    Article  Google Scholar 

  33. Anderson RR, Farinelli W, Laubach H, Manstein D, Yaroslavsky AN, Gubeli J, et al. Selective photothermolysis of lipid-rich tissues: a free electron laser study. Laser Surg Med. 2006;38:913–9.

    Article  Google Scholar 

  34. Dai XJ, Yang H, Shan TQ, Xie HK, Berceli SA, Jiang HB. Miniature endoscope for multimodal imaging. ACS Photon. 2017;4:174–80.

    Article  Google Scholar 

  35. Wang P, Rajian JR, Cheng JX. Spectroscopic imaging of deep tissue through photoacoustic detection of molecular vibration. J Phys Chem Lett. 2013;4:2177–85.

    Article  Google Scholar 

  36. American National Standard for Safe Use of Lasers, ANSI Z136.1. 2014.

  37. Tran PH, Mukai DS, Brenner M, Chen Z. In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe. Opt Lett. 2004;29:1236–8.

    Article  Google Scholar 

  38. Li X, Ma T, Tian J, Han P, Zhou Q, Shung KK. Micromachined PIN–PMN–PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61:1171–8.

    Article  Google Scholar 

  39. Park J, Li X, Zhou QF, Shung KK. Combined chirp coded tissue harmonic and fundamental ultrasound imaging for intravascular ultrasound: 20–60 MHz phantom and ex vivo results. Ultrasonics. 2013;53:369–76.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Qifa Zhou’s group for contributing experts in ultrasound transducer and ultrasound imaging.

Funding

National Institutes of Health (R01HL-125084, R01HL-127271, R01EY-026091, R01EY-021529, and P41EB-015890); Air Force Office of Scientific Research (FA9550-17-1-0193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Chen.

Ethics declarations

Conflict of interest

Dr. Zhongping Chen has a financial interest in OCT Medical Imaging, Inc., which, however, did not support this work.

Ethical approval

All methods were carried out in accordance with the Guide for Care and Use of Laboratory Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, Z. Multimodal intravascular photoacoustic and ultrasound imaging. Biomed. Eng. Lett. 8, 193–201 (2018). https://doi.org/10.1007/s13534-018-0061-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-018-0061-8

Keywords

Navigation