Skip to main content

Advertisement

Log in

A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

According to the World Health Organization (WHO), breast cancer is the most common cancer affecting women worldwide. In the USA ~12.3 % of all women are expected to be diagnosed with various types of breast cancer, exhibiting varying degrees of therapeutic response rates. Therefore, the identification of novel anti-breast cancer drugs is of paramount importance.

Methods

The 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore was incorporated into a number of cytotoxins. Three of the resulting dienones, 2a, 2b and 2c, were tested for their anti-neoplastic potencies in a variety of human breast cancer-derived cell lines, including the triple negative MDA-MB-231 cell line and its metastatic variant, using a live-cell bio-imaging method. Special emphasis was put on dienone 2c, since its anti-cancer activity and its mode of inflicting cell death have so far not been reported.

Results

We found that all three dienones exhibited potent cytotoxicities towards the breast cancer-derived cell lines tested, whereas significantly lower toxicities were observed towards the non-cancerous human breast cell line MCF-10A. The dienones 2b and 2c exhibited the greatest selective cytotoxicity at submicromolar concentration levels. We found that these two dienones induced phosphatidylserine externalization in MDA-MB-231 cells in a concentration-dependent manner, suggesting that their cytotoxic effect might be mediated by apoptosis. This possibility was confirmed by our observation that the dienone 2c can induce mitochondrial depolarization, caspase-3 activation, cell cycle disruption and DNA fragmentation in MDA-MB-231 cells.

Conclusion

Our findings indicate that dienone 2c uses the mitochondrial/intrinsic pathway to inflict apoptosis in triple negative MDA-MB-231 breast cancer-derived cells. This observation warrants further assessment of dienone 2c as a potential anti-breast cancer drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Howlader, A.M. Noone, M. Krapcho, J. Garshell, D. Miller, S.F. Altekruse, C.L. Kosary, M. Yu, J. Ruhl, Z. Tatalovich, A. Mariotto, D.R. Lewis, H.S. Chen, E.J. Feuer, K.A. Cronin, SEER Cancer Statistics Review, 1975-2012, National Cancer Institute, Bethesda, MD, http://seer.cancer.gov/csr/1975_2012/, based on November 2014 SEER data submission, posted to the SEER web site, April 2015. Accessed Jan 2016

  2. J. Lu, P.S. Steeg, J.E. Price, S. Krishnamurthy, S.A. Mani, J. Reuben, M. Cristofanilli, G. Dontu, L. Bidaut, V. Valero, G.N. Hortobagyi, D. Yu, Breast cancer metastasis: challenges and opportunities. Cancer Res. 69, 4951–4953 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. Cancer Genome Atlas Network, Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012). doi:10.1038/nature11412

    Article  Google Scholar 

  4. D.E. Berardi, C. Flumian, P.B. Campodonico, A.J. Urtreger, M.I. Diaz Bessone, A.N. Motter, E.D. Bal de Kier Joffe, E.F. Farias, L.B. Todaro, Myoepithelial and luminal breast cancer cells exhibit different responses to all-trans retinoic acid. Cell. Oncol. 38, 289–305 (2015). doi:10.1007/s13402-015-0230-z

    Article  CAS  Google Scholar 

  5. I. Fkih M’hamed, M. Privat, F. Ponelle, F. Penault-Llorca, A. Kenani, Y.J. Bignon, Identification of miR-10b, miR-26a, miR-146a and miR-153 as potential triple-negative breast cancer biomarkers. Cell. Oncol. 38, 433–442 (2015). doi:10.1007/s13402-015-0239-3

    Article  Google Scholar 

  6. C.B. Moelans, E.J. Vlug, C. Ercan, P. Bult, H. Buerger, G. Cserni, P.J. van Diest, P.W. Derksen, Methylation biomarkers for pleomorphic lobular breast cancer - a short report. Cell. Oncol. 38, 397–405 (2015). doi:10.1007/s13402-015-0241-9

    Article  CAS  Google Scholar 

  7. Y. You, H. Li, X. Qin, Y. Zhang, W. Song, Y. Ran, F. Gao, Decreased CDK10 expression correlates with lymph node metastasis and predicts poor outcome in breast cancer patients - a short report. Cell. Oncol. 38, 485–491 (2015). doi:10.1007/s13402-015-0246-4

    Article  CAS  Google Scholar 

  8. T. Vargo-Gogola, J.M. Rosen, Modelling breast cancer: one size does not fit all. Nat. Rev. Cancer 7, 659–672 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. R. Dent, M. Trudeau, K.I. Pritchard, W.M. Hanna, H.K. Kahn, C.A. Sawka, L.A. Lickley, E. Rawlinson, P. Sun, S.A. Narod, Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer Res. 13, 4429–4434 (2007)

    Article  PubMed  Google Scholar 

  10. S. Badve, D.J. Dabbs, S.J. Schnitt, F.L. Baehner, T. Decker, V. Eusebi, S.B. Fox, S. Ichihara, J. Jacquemier, S.R. Lakhani, J. Palacios, E.A. Rakha, A.L. Richardson, F.C. Schmitt, P.-H. Tan, G.M. Tse, B. Weigelt, I.O. Ellis, J.S. Reis-Filho, Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod. Pathol. 24, 157–167 (2011)

    Article  PubMed  Google Scholar 

  11. R. Cailleau, R. Young, M. Olive, W.J. Reeves Jr., Breast tumor cell lines from pleural effusions. J. Natl. Cancer Inst. 53, 661–674 (1974)

    CAS  PubMed  Google Scholar 

  12. R. Munoz, S. Man, Y. Shaked, C.R. Lee, J. Wong, G. Francia, R.S. Kerbel, Highly efficacious nontoxic preclinical treatment for advanced metastatic breast cancer using combination oral UFT-cyclophosphamide metronomic chemotherapy. Cancer Res. 66, 3386–3391 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. H.D. Soule, T.M. Maloney, S.R. Wolman, W.D. Peterson Jr., R. Brenz, C.M. McGrath, J. Russo, R.J. Pauley, R.F. Jones, S.C. Brooks, Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50, 6075–6086 (1990)

    CAS  PubMed  Google Scholar 

  14. E. Robles-Escajeda, A. Martinez, A. Varela-Ramirez, R.A. Sanchez-Delgado, R.J. Aguilera, Analysis of the cytotoxic effects of ruthenium-ketoconazole and ruthenium-clotrimazole complexes on cancer cells. Cell Biol. Toxicol. 29, 431–443 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. Mohankumar, S. Pajaniradje, S. Sridharan, V.K. Singh, L. Ronsard, A.C. Banerjea, B.C. Selvanesan, M.S. Coumar, L. Periyasamy, R. Rajagopalan, Apoptosis induction by an analog of curcumin (BDMC-A) in human laryngeal carcinoma cells through intrinsic and extrinsic pathways. Cell. Oncol. 37, 439–454 (2014). doi:10.1007/s13402-014-0207-3

    Article  CAS  Google Scholar 

  16. M.A. Pereira, C.J. Grubbs, L.H. Barnes, H. Li, G.R. Olson, I. Eto, M. Juliana, L.M. Whitaker, G.J. Kelloff, V.E. Steele, R.A. Lubet, Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane-induced colon cancer and 7,12-dimethylbenz[a]anthracene-induced mammary cancer in rats. Carcinogenesis 17, 1305–1311 (1996)

    Article  CAS  PubMed  Google Scholar 

  17. T.S. Rao, N. Basu, H.H. Siddiqui, Anti-inflammatory activity of curcumin analogues. Indian J. Med. Res. 75, 574–578 (1982)

    CAS  PubMed  Google Scholar 

  18. B. Mutus, J.D. Wagner, C.J. Talpas, J.R. Dimmock, O.A. Phillips, R.S. Reid, 1-p-Chlorophenyl-4,4-dimethyl-5-diethylamino-1-penten-3-one hydrobromide, a sulfhydryl-specific compound which reacts irreversibly with protein thiols but reversibly with small molecular weight thiols. Anal. Biochem. 177, 237–243 (1989)

    Article  CAS  PubMed  Google Scholar 

  19. C.P. Page, Integrated pharmacology, 3rd edn. (Elsevier Mosby, Edinburgh, 2006)

    Google Scholar 

  20. U. Das, R.K. Sharma, J.R. Dimmock, 1,5-diaryl-3-oxo-1,4-pentadienes: a case for antineoplastics with multiple targets. Curr. Med. Chem. 16, 2001–2020 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. G. Chen, D.J. Waxman, Role of cellular glutathione and glutathione S-transferase in the expression of alkylating agent cytotoxicity in human breast cancer cells. Biochem. Pharmacol. 47, 1079–1087 (1994)

    Article  CAS  PubMed  Google Scholar 

  22. J.B. Mitchell, A. Russo, The role of glutathione in radiation and drug induced cytotoxicity. Br. J. Cancer Suppl. 8, 96–104 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. J.R. Dimmock, M.P. Padmanilayam, R.N. Puthucode, A.J. Nazarali, N.L. Motaganahalli, G.A. Zello, J.W. Quail, E.O. Oloo, H.B. Kraatz, J.S. Prisciak, T.M. Allen, C.L. Santos, J. Balzarini, E. De Clercq, E.K. Manavathu, A conformational and structure-activity relationship study of cytotoxic 3,5-bis(arylidene)-4-piperidones and related N-acryloyl analogues. J. Med. Chem. 44, 586–593 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. U. Das, J. Alcorn, A. Shrivastav, R.K. Sharma, E. De Clercq, J. Balzarini, J.R. Dimmock, Design, synthesis and cytotoxic properties of novel 1-[4-(2-alkylaminoethoxy)phenylcarbonyl]-3,5-bis(arylidene)-4-piperidones and related compounds. Eur. J. Med. Chem. 42, 71–80 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. C. Lema, A. Varela-Ramirez, R.J. Aguilera, Differential nuclear staining assay for high-throughput screening to identify cytotoxic compounds. Curr Cell. Biochem. 1, 1–14 (2011)

    PubMed  PubMed Central  Google Scholar 

  26. J. Debnath, S.K. Muthuswamy, J.S. Brugge, Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. L.M. Nunes, E. Robles-Escajeda, Y. Santiago-Vazquez, N.M. Ortega, C. Lema, A. Muro, G. Almodovar, U. Das, S. Das, J.R. Dimmock, R.J. Aguilera, A. Varela-Ramirez, The gender of cell lines matters when screening for novel anti-cancer drugs. AAPS J. 16, 872–874 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. Varela-Ramirez, M. Costanzo, Y.P. Carrasco, K.H. Pannell, R.J. Aguilera, Cytotoxic effects of two organotin compounds and their mode of inflicting cell death on four mammalian cancer cells. Cell Biol. Toxicol. 27, 159–168 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. E. Robles-Escajeda, D. Lerma, A.M. Nyakeriga, J.A. Ross, R.A. Kirken, R.J. Aguilera, A. Varela-Ramirez, Searching in mother nature for anti-cancer activity: anti-proliferative and pro-apoptotic effect elicited by green barley on leukemia/lymphoma cells. PLoS One 8, e73508 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. B. Valdez, K. Carr, J. Norman, Violet-excited nim-DAPI allows efficient and reproducible cell cycle analysis on the Gallios flow cytometer. Beckman Coulter Life Sciences. Houston, TX, http://www.bcilifesciences.com/flow/DAPIwhitepaper/BR-18940.pdf. Accesed Jan 2016

  31. H. Li, H. Zhu, C.J. Xu, J. Yuan, Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998)

    Article  CAS  PubMed  Google Scholar 

  32. D.A. Pedroza, F. De Leon, A. Varela-Ramirez, C. Lema, R.J. Aguilera, S. Mito, The cytotoxic effect of 2-acylated-1,4-naphthohydroquinones on leukemia/lymphoma cells. Biorg. Med. Chem. 22, 842–847 (2014). doi:10.1016/j.bmc.2013.12.007

    Article  CAS  Google Scholar 

  33. B. Yadav, S. Taurin, R.J. Rosengren, M. Schumacher, M. Diederich, T.J. Somers-Edgar, L. Larsen, Synthesis and cytotoxic potential of heterocyclic cyclohexanone analogues of curcumin. Biorg. Med. Chem. 18, 6701–6707 (2010)

    Article  CAS  Google Scholar 

  34. J.-M. Shieh, Y.-C. Chen, Y.-C. Lin, J.-N. Lin, W.-C. Chen, Y.-Y. Chen, C.-T. Ho, T.-D. Way, Demethoxycurcumin inhibits energy metabolic and oncogenic signaling pathways through AMPK activation in triple-negative breast cancer cells. J. Agric. Food Chem. 61, 6366–6375 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. E. Solary, N. Droin, A. Bettaieb, L. Corcos, M.T. Dimanche-Boitrel, C. Garrido, Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies. Leukemia 14, 1833–1849 (2000)

    Article  CAS  PubMed  Google Scholar 

  36. Z. Birsu Cincin, M. Unlu, B. Kiran, E. Sinem Bireller, Y. Baran, B. Cakmakoglu, Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells. Cell. Oncol. 38, 195–204 (2015). doi:10.1007/s13402-015-0222-z

    Article  CAS  Google Scholar 

  37. T. Nakaoka, A. Ota, T. Ono, S. Karnan, H. Konishi, A. Furuhashi, Y. Ohmura, Y. Yamada, Y. Hosokawa, Y. Kazaoka, Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell. Oncol. 37, 119–129 (2014). doi:10.1007/s13402-014-0167-7

    Article  CAS  Google Scholar 

  38. L.A. Loeb, D.C. Wallace, G.M. Martin, The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. PNAS 102, 18769–18770 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. B. Westermann, Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884 (2010)

    Article  CAS  PubMed  Google Scholar 

  40. M. Lahouel, S. Amedah, A. Zellagui, A. Touil, S. Rhouati, F. Benyache, E. Leghouchi, H. Bousseboua, The interaction of new plant flavonoids with rat liver mitochondria: relation between the anti- and pro-oxydant effect and flavonoids concentration. Therapie 61, 347–355 (2006)

    Article  PubMed  Google Scholar 

  41. B.K. Adams, J. Cai, J. Armstrong, M. Herold, Y.J. Lu, A. Sun, J.P. Snyder, D.C. Liotta, D.P. Jones, M. Shoji, EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs 16, 263–275 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. F.H. Igney, P.H. Krammer, Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer 2, 277–288 (2002)

    Article  CAS  PubMed  Google Scholar 

  43. S. Kothakota, T. Azuma, C. Reinhard, A. Klippel, J. Tang, K. Chu, T.J. McGarry, M.W. Kirschner, K. Koths, D.J. Kwiatkowski, L.T. Williams, Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294–298 (1997)

    Article  CAS  PubMed  Google Scholar 

  44. J.D. Ly, D.R. Grubb, A. Lawen, The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8, 115–128 (2003)

    Article  CAS  PubMed  Google Scholar 

  45. R. Gogada, M. Amadori, H. Zhang, A. Jones, A. Verone, J. Pitarresi, S. Jandhyam, V. Prabhu, J.D. Black, D. Chandra, Curcumin induces Apaf-1-dependent, p21-mediated caspase activation and apoptosis. Cell Cycle 10, 4128–4137 (2011). doi:10.4161/cc.10.23.18292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. B. Fadeel, S. Orrenius, B. Zhivotovsky, Apoptosis in human disease: a new skin for the old ceremony? Biochem. Biophys. Res. Commun. 266, 699–717 (1999). doi:10.1006/bbrc.1999.1888

    Article  CAS  PubMed  Google Scholar 

  47. S. Nagata, Apoptotic DNA fragmentation. Exp. Cell Res. 256, 12–18 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the National Institute of General Medical Sciences-Support of Competitive Research grant 1SC3GM103713-03 to RJA, as well as a Canadian Institutes of Health Research-Regional Partnerships Program Saskatchewan grant to JRD and UD. The authors also thank the Cytometry, Screening and Imaging Core Facility at the University of Texas at El Paso (UTEP), which was supported by a Research Centers in Minority Institutions program grant 2G12MD007592 to the Border Biomedical Research Center in UTEP from the National Institute on Minority Health and Health Disparities, a component of National Institutes of Health. The authors thank Gladys Almodovar and Sarah T. Baca (both with UTEP) for critical reviews of the manuscript and cell culture expertise, and to Drs. Karen Carr and John Norman (both with Beckman Coulter) for advice and instructions on the cell-cycle protocol, and also for the generous gift of the NIM-DAPI reagent. NMO, KP and ER-E were supported by NIGMS RISE training grant R25 GM069621-12. NMO was also supported by a Maximizing Access to Research Careers U*STAR program grant 2T34GM008048. KP was supported by the Student Mentoring to Achieve Retention: Triads in Science (SMARTS) program from National Science Foundation, grant DUE-1153832.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Armando Varela-Ramirez or Renato J. Aguilera.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robles-Escajeda, E., Das, U., Ortega, N.M. et al. A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells. Cell Oncol. 39, 265–277 (2016). https://doi.org/10.1007/s13402-016-0272-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-016-0272-x

Keywords

Navigation