Skip to main content
Log in

Enhanced thermoelectric properties and development of nanotwins in Na-doped Bi0.5Sb1.5Te3 alloy

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We found that Na is a good source to develop twin structures in the Bi-Te system, such as Ag as noted in a previous study. The twin boundaries had a considerable influence on reductions of the lattice thermal conductivity due to phonon scattering by the nano-ordered layers and on reductions of the electrical resistivity owing to the defects generated by the substitution of Na into the cation sites. Here, we report the enhanced thermoelectric properties of a Na-doped p-type Bi0.5Sb1.5Te3 alloy. Measurements show that the electrical resistivity and the Seebeck coefficient decrease with Na doping due to an increase in the free carrier (hole) concentration and that the lattice thermal conductivity decreases with Na doping. The achieved maximum ZT value was 1.20 at 423 K, which is approximately 20% higher than that of Bi0.5Sb1.5Te3 under the same fabrication conditions. These results were achievable by controlling the morphology of the twin structure and the carrier concentration by means of Na doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Saxena, D. K. Adhikari, and H. B. Goyal, Renew. Sust. Energ. Rev. 13, 167 (2009).

    Article  Google Scholar 

  2. G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. B. C. Sales, Science 295, 1248 (2002).

    Article  Google Scholar 

  4. J. E. Lee, S. H. Cho, M. W. Oh, B. R, B. S. Kim, B. K. Min, H. W. Lee, and S. D. Park, Electron. Mater. Lett. 10, 807 (2014).

    Article  Google Scholar 

  5. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  6. M. W. Oh, D. M. Wee, S. D. Park, B. S. Kim, and H. W. Lee, Phys. Rev. B 77, 1651119 (2008).

    Google Scholar 

  7. T. M. Tritt, Science 283, 804 (1999).

    Article  Google Scholar 

  8. K. Biswas, J. Q. He, I. D. Blum, C. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  9. P. K. Nguyen, K. H. Lee, J. Moons, S. I. Kim, K. A. Ahn, L. H Chen, S. Jin, and A. E. Berkowitz, Nanotechnology 23, 415604 (2012).

    Article  Google Scholar 

  10. C. J. Liu, G. J. Liu, Y. L. Liu, and L. R. Chen, J. Mater. Res. 26, 15 (2011).

    Google Scholar 

  11. Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, and L. Chen, Adv. Funct. Mater. 25, 966 (2015).

    Article  Google Scholar 

  12. J. K. Lee, S. D. Park, B. S. Kim, M. W. Oh, S. H. Cho, B. K. Min, H. W. Lee, and M. H. Kim, Electron. Mater. Lett. 6, 201 (2010).

    Article  Google Scholar 

  13. S. W. Hwang, S. I. Kim, K. G. Ahn, J. W. Roh, D. J. Yang, S. M. Lee, and K. H. Lee, J. Electron. Mater. 42, 1411 (2013).

    Article  Google Scholar 

  14. X. Duan, K Hu, D. Man, S. Ding, Y. Jiang, and S. Guo, Chinese J. Rare. Mater. 37, 757 (2013).

    Google Scholar 

  15. J. W. Christian and S. Mahajan, Prog. Mater. Sci. 14, 226 (2009).

    Google Scholar 

  16. S. Mahajan, C. S. Pande, M. A. Iman, and B. B. Rath, Acta Mater. 45, 2633 (1997).

    Article  Google Scholar 

  17. J. H. Son, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min, M. H. Kim, and H. W. Lee, J. Alloy. Compd. 566, 168 (2013).

    Article  Google Scholar 

  18. H. Goldsmid and J. Sharp, J. Electron. Mater. 28, 869 (1999).

    Article  Google Scholar 

  19. H. Yang, J. H. Bahk, T. Day, A. M. S. Mohammed, G. J. Snyder, A. Shakouri, and Y. Wu, Nano Lett. 15, 1349 (2015).

    Article  Google Scholar 

  20. J. S. Rhyee, E. Cho, K. Ahn, K. H. Lee, and S. M. Lee, Appl. Phys. Lett. 97, 152104 (2010).

    Article  Google Scholar 

  21. J. K. Lee, S. D. Park, B. S. Kim, M. W. Oh, S. H. Cho, B. K. Min, H. W. Lee, and M. H. Kim, Electron. Mater. Lett. 10, 813 (2014).

    Article  Google Scholar 

  22. S. Wang, J. Yang, T. Toll, J. Yang, W. Zhang, and X. Tang, Sci. Rep. 5, 10136 (2015).

    Article  Google Scholar 

  23. G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, p. 42, Springer, Berlin (2001).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Dong Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, J.K., Park, SD. et al. Enhanced thermoelectric properties and development of nanotwins in Na-doped Bi0.5Sb1.5Te3 alloy. Electron. Mater. Lett. 12, 290–295 (2016). https://doi.org/10.1007/s13391-015-5390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5390-5

Keywords

Navigation