Skip to main content
Log in

In-situ XPS study of ALD ZnO passivation of p-In0.53Ga0.47As

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The effects of ALD ZnO passivation of ammonium hydroxide cleaned p-In0.53Ga0.47As is studied in detail with in-situ x-ray photoelectron spectroscopy (XPS), and metal-oxide-semiconductor capacitors (MOSCAPs) are fabricated in order to judge the effectiveness of ZnO as a passivation layer. Diethylzinc (DEZ) and water are used as precursors. Multiple DEZ pulses are used in the first ALD cycle in order to determine the oxide cleanup ability of DEZ. XPS results indicate that DEZ can chemically reduce Ga3+ and As5+ to Ga1+ and As3+ respectively, with the majority of change occurring before the first water pulse. DEZ is found to have minimal oxide cleanup ability, with the overall the amount of As oxide reduced by approximately 15% and Ga oxide remaining unchanged. ZnO passivated MOSCAPs with HfO2 dielectric show significant improvement over MOSCAPs without ZnO passivation. Accumulation frequency dispersion, hysteresis and D it are all reduced dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. del Alamo, Nature 479, 317 (2011).

    Article  Google Scholar 

  2. R. Chau, S. Datta, and A. Majumdar, in Compound Semiconductor Integrated Circuit Symposium, 4 (2005).

  3. L. Xia, J. B. Boos, B. R. Bennett, M. G. Ancona, and J. A. del Alamo, Appl. Phys. Lett. 98, 053505 (2011).

    Article  Google Scholar 

  4. S. Suthram, Y. Sun, P. Majhi, I. Ok, H. Kim, H. R. Harris, N. Goel, S. Parthasarathy, A. Koehler, T. Acosta, T. Nishida, H. H. Tseng, W. Tsai, J. Lee, R. Jammy, and S. E. Thompson, in VLSI Technology, 182 (2008).

    Google Scholar 

  5. P. D. Ye, J. Vac. Sci. Technol. A. 26, 697 (2008).

    Article  Google Scholar 

  6. M. Hong, J. R. Kwo, P. Tsai, Y. Chang, M.-L. Huang, C. Chen, and T. Lin, Jpn. J. Appl. Phys. 46, 3167 (2007).

    Article  Google Scholar 

  7. T. Ito and Y. Sakai, Solid-State Electronics 17, 751 (1974).

    Article  Google Scholar 

  8. M. Houssa, E. Chagarov, and A. Kummel, MRS Bulletin. 34, 504 (2009).

    Article  Google Scholar 

  9. J. Robertson and L. Lin, Microelectron. Eng. 88, 1440 (2011).

    Article  Google Scholar 

  10. C. Marchiori, E. Kiewra, J. Fompeyrine, C. Gerl, C. Rossel, M. Richter, J. P. Locquet, T. Smets, M. Sousa, C. Andersson, and D. J. Webb, Appl. Phys. Lett. 96, 212901 (2010).

    Article  Google Scholar 

  11. V. Chobpattana, T. E. Mates, J. Y. Zhang, and S. Stemmer, Appl. Phys. Lett. 104, 182912 (2014).

    Article  Google Scholar 

  12. ITRS: Process Integration, Devices, and Structures (2013).

  13. J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, Chem. Mat. 15, 3507 (2003).

    Article  Google Scholar 

  14. M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, Appl. Phys. Lett. 87, 252104 (2005).

    Article  Google Scholar 

  15. C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 92, 071901 (2008).

    Article  Google Scholar 

  16. Y. C. Byun, S. Choi, Y. An, P. C. McIntyre, and H. Kim, ACS Appl. Mater. Inter. 6, 10482 (2014).

    Article  Google Scholar 

  17. A. T. Lucero, Y. C. Byun, X. Qin, L. Cheng, R. M. Wallace, and J. Kim (Unpublished).

  18. C. L. Hinkle, M. Milojevic, E. M. Vogel, and R. M. Wallace, Microelectron. Eng. 86, 1544 (2009).

    Article  Google Scholar 

  19. A. P. Kirk, M. Milojevic, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 96, 202905 (2010).

    Article  Google Scholar 

  20. C. H. Chang, Y. K. Chiou, Y. C. Chang, K. Y. Lee, T. D. Lin, T. B. Wu, M. Hong, and J. Kwo, Appl. Phys. Lett. 89, 242911 (2006).

    Article  Google Scholar 

  21. C. L. Hinkle, E. M. Vogel, P. D. Ye, and R. M. Wallace, Curr. Opin. Solid State Mater. Sci. 15, 188 (2011).

    Article  Google Scholar 

  22. R. V. Galatage, D. M. Zhernokletov, H. Dong, B. Brennan, C. L. Hinkle, R. M. Wallace, and E. M. Vogel, J. Appl. Phys. 116, 014504 (2014).

    Article  Google Scholar 

  23. C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, Appl. Phys. Lett. 94, 162101 (2009).

    Article  Google Scholar 

  24. R. Engel-Herbert, Y. Hwang, and S. Stemmer, J. Appl. Phys. 108, 124101 (2010).

    Article  Google Scholar 

  25. C. J. Sandroff, M. S. Hegde, L. A. Farrow, C. C. Chang, and J. P. Harbison, Appl. Phys. Lett. 54, 362 (1989).

    Article  Google Scholar 

  26. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).

    Article  Google Scholar 

  27. S. W. Cho, M. G. Yun, C. H. Ahn, S. H. Kim, and H. K. Cho, Electron. Mater. Lett. 11, 205 (2015).

    Google Scholar 

  28. H. Park, M. Hasan, M. Jo, and H. Hwang, Electron. Mater. Lett. 3, 75 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Chul Byun or Jiyoung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucero, A.T., Byun, YC., Qin, X. et al. In-situ XPS study of ALD ZnO passivation of p-In0.53Ga0.47As. Electron. Mater. Lett. 11, 769–774 (2015). https://doi.org/10.1007/s13391-015-5150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5150-6

Keywords

Navigation