Skip to main content
Log in

Au/NiFe magnetoplasmonics: Large enhancement of magneto-optical kerr effect for magnetic field sensors and memories

  • Original Article
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Surface plasmon polariton resonance (SPPR) can be originated from the surface charge oscillation via light localization at the interface of a metal, for example, Au or Ag and a dielectric. Such localization can be implemented to increase the magneto-optical (MO) activity of a magnetic medium while SPPR is fulfilled, which is known as magnetoplasmonics. In this paper, a magnetoplasmonic bilayer of Au/ NiFe (Py) sputter deposited on glass is demonstrated. Large enhancement in MO-Kerr effect (MOKE) response due to SPPR effect is observed at different light incident angles. By measuring and analyzing the MO signals from the sample with different thicknesses of Au and Py layers, the optimal thicknesses’ range is obtained with the largest MOKE. The large MOKE intensity from ultra-soft magnetic Py layer with low coercivity and small saturation field suggests a weak magnetic fieldsensitive MO-based element. Finally, different applications of such structures, for example, weak magnetic field sensors and magnetic multilevel memory elements are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. M. Agranovich and D. L. Mills (Eds.), Surface Polaritons, North-Holland, Amsterdam (1982).

    Google Scholar 

  2. K. Welford, Opt. Quant. Electron. 23, 1 (1991).

    Google Scholar 

  3. C. Wang, H.-P. Ho, and P. Shum, Opt. Commun. 291, 470 (2013).

    Google Scholar 

  4. R. L. Rich and D. G. Myszka, Curr. Opin. Biotech. 11, 54 (2000).

    Google Scholar 

  5. L. Wang, Y. Sun, J. Wang, J. Wang, A. Yu, H. Zhang, and D. Song, Colloid. Surface B 84, 484 (2011).

    Google Scholar 

  6. D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, J. Appl. Phys. 108, 054502 (2010).

    Google Scholar 

  7. M. G. Manera, E. Ferreiro-Vila, J. M. Garcia-Martin, A. Cebollada, A. Garcia-Martin, G. Giancane, L. Valli, and R. Rella, Sensor. Actuat. B Chem. 182, 232 (2013).

    Google Scholar 

  8. M. G. Manera, E. Ferreiro-Vila, A. Cebollada, J. M. Garcia-Martin, A. Garcia-Martin, G. Giancane, L. Valli, and R. Rella, J. Phys. Chem. C 116, 10734 (2012).

    Google Scholar 

  9. J. Vlcek, M. Lesnak, J. Pistora, and O. Zivotsky, Opt. Commun. 286, 372 (2013).

    Google Scholar 

  10. D. Regatos, B. Sepulveda, D. Farina, L. G. Carrascosa, and L. M. Lechuga, Opt. Express 19, 8336 (2011).

    Google Scholar 

  11. A. Akbari, R. N. Tait, and P. Berini, Opt. Express 18, 8505 (2010).

    Google Scholar 

  12. S. A. Meyer, E. C. L. Ru, and P. G. Etchegoin, Anal. Chem. 83, 2337 (2011).

    Google Scholar 

  13. N. Bonod, R. Reinisch, E. Popov, and M. Neviere, J. Opt. Soc. Am. B 21, 791 (2004).

    Google Scholar 

  14. Y. Demidenko, D. Makarov, O. Schmidt, and V. Lozovski, J. Opt. Soc. Am. B 28, 2115 (2011).

    Google Scholar 

  15. E. F. Vila, X. M. B. Sueiro, J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. C. Navarro, G. A. Reig, D. M. Rodriguez, and E. M. Sandoval, IEEE Trans. Magn. 44, 3303 (2008).

    Google Scholar 

  16. M. Ghanaatshoar, M. Moradi, and P. Tohidi, Eur. Phys. J.-Appl. Phys. 68, 10402 (2014).

    Google Scholar 

  17. M. Ghanaatshoar, M. Moradi, M. M. Tehranchi, and S. M. Hamidi, J. Non-Cryst. Solids 354, 5266 (2008).

    Google Scholar 

  18. M. Moradi and M. Ghanaatshoar, Eur. Phys. J.-Appl. Phys. 61, 10603 (2013).

    Google Scholar 

  19. M. Moradi, H. Alisafaee, and M. Ghanaatshoar, Physica B 405, 4488 (2010).

    Google Scholar 

  20. N. Ansari, S. I. Khartsev, and A. M. Grishin, Opt. Lett. 37, 3552 (2012).

    Google Scholar 

  21. N. Ansari and M. M. Tehranchi, Acta Phys. Pol. A 115, 378 (2009).

    Google Scholar 

  22. N. Ansari and M. M. Tehranchi, Appl. Phys. B 99, 191 (2010).

    Google Scholar 

  23. D. C. Tsui, Phys. Rev. Lett. 22, 293 (1969).

    Google Scholar 

  24. H. Feil and C. Haas, Phys. Rev. Lett. 58, 65 (1978).

    Google Scholar 

  25. C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, Opt. Express 18, 7743 (2010).

    Google Scholar 

  26. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, Nat. Photonics 4, 107 (2010).

    Google Scholar 

  27. J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, Phys. Rev. B 76, 153402 (2007).

    Google Scholar 

  28. Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski, J. Opt. Soc. Am. B 30, 2053 (2013).

    Google Scholar 

  29. E. Ferreiro-Vila, M. Iglesias, E. Paz, F. J. Palomares, F. Cebollada, J. M. Gonzalez, G. Armelles, J. M. Garcia-Martin, and A. Cebollada, Phys. Rev. B 83, 205120 (2011).

    Google Scholar 

  30. S. M. Hamidi and M. A. Oskuei, J. Supercond. Nov. Magn. 27, 1469 (2014).

    Google Scholar 

  31. J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-Gonzalez, F. Huth, S. Bonetti, V. Bonanni, J. Akerman, J. Nogues, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, Small 7, 2341 (2011).

    Article  Google Scholar 

  32. K. Lodewijks, N. Maccaferri, T. Pakizeh, R. K. Dumas, E. Zubritskaya, J. Åkerman, P. Vavassori, and A. Dmitriev, Nano Lett. 14, 7207 (2014).

    Google Scholar 

  33. E. Kretschmann, Z.Phys. 241, 313 (1971).

    Google Scholar 

  34. S. Visnovsky, R. Lopusnik, M. Bauer, J. Bok, J. Fassbender, and B. Hillebrands, Opt. Express 9, 12 (2001).

    Google Scholar 

  35. E. D. Palik, Handbook of Optical Constants of Solids, Academic press, New York (1998).

    Google Scholar 

  36. M. Moradi and M. Ghanaatshoar, Opt. Commun. 283, 5053 (2010).

    Google Scholar 

  37. S. Chung, S. M. Mohseni, V. Fallahi, T. N. Anh Nguyen, N. Benatmane, R. K. Dumas, and J. Åkerman, J. Phys. D: Appl. Phys. 46, 125004 (2013).

    Google Scholar 

  38. T. N. Anh Nguyen, R. Knut, V. Fallahi, S. Chung, S. M. Mohseni, Q. Tuan Le, O. Karis, S. Peredkov, R. K. Dumas, C. W. Miller, and J. Åkerman, Phys. Rev. Appl. 2, 044014 (2014).

    Google Scholar 

  39. L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, New York (2006).

    Book  Google Scholar 

  40. M. Ghanaatshoar and M. Moradi, Opt. Eng. 50, 093801 (2011).

    Google Scholar 

  41. E. Chatterjee, T. Marr, P. Dhagat, and V. T. Remcho, Sensor. Actuat. B Chem. 156, 651 (2011).

    Google Scholar 

  42. B. Sepulveda, A. Calle, L. M. Lechuga, and G. Armelles, Opt. Lett. 31, 1085 (2006).

    Google Scholar 

  43. N. Amos, J. Butler, B. Lee, M. H. Shachar, B. Hu, Y. Tian, J. Hong, D. Garcia, R. M. Ikkawi, R. C. Haddon, D. Litvinov, and S. Khizroev, PLoS One 7, e40134 (2012).

  44. Y. Fang, R. K. Dumas, T. N. Anh Nguyen, S. M. Mohseni, S. Chung, and J. Akerman, Adv. Funct. Mater. 23, 1919 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Majid Mohseni.

Additional information

Authors with equal contributions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, M., Mohseni, S.M., Mahmoodi, S. et al. Au/NiFe magnetoplasmonics: Large enhancement of magneto-optical kerr effect for magnetic field sensors and memories. Electron. Mater. Lett. 11, 440–446 (2015). https://doi.org/10.1007/s13391-015-4374-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4374-9

Keywords

Navigation