Skip to main content
Log in

Diurnal and Seasonal Variations of Thermal Stratification and Vertical Mixing in a Shallow Fresh Water Lake

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Among several influential factors, the geographical position and depth of a lake determine its thermal structure. In temperate zones, shallow lakes show significant differences in thermal stratification compared to deep lakes. Here, the variation in thermal stratification in Lake Taihu, a shallow fresh water lake, is studied systematically. Lake Taihu is a warm polymictic lake whose thermal stratification varies in short cycles of one day to a few days. The thermal stratification in Lake Taihu has shallow depths in the upper region and a large amplitude in the temperature gradient, the maximum of which exceeds 5°C m–1. The water temperature in the entire layer changes in a relatively consistent manner. Therefore, compared to a deep lake at similar latitude, the thermal stratification in Lake Taihu exhibits small seasonal differences, but the wide variation in the short term becomes important. Shallow polymictic lakes share the characteristic of diurnal mixing. Prominent differences on the duration and frequency of long-lasting thermal stratification are found in these lakes, which may result from the differences of local climate, lake depth, and fetch. A prominent response of thermal stratification to weather conditions is found, being controlled by the stratifying effect of solar radiation and the mixing effect of wind disturbance. Other than the diurnal stratification and convection, the representative responses of thermal stratification to these two factors with contrary effects are also discussed. When solar radiation increases, stronger wind is required to prevent the lake from becoming stratified. A daily average wind speed greater than 6 m s–1 can maintain the mixed state in Lake Taihu. Moreover, wind-induced convection is detected during thermal stratification. Due to lack of solar radiation, convection occurs more easily in nighttime than in daytime. Convection occurs frequently in fall and winter, whereas long-lasting and stable stratification causes less convection in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, S. A., S. Diehl, H. Stibor, et al., 2007: Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia, 150, 643–654, doi: 10.1007/s00442-006-0550-9.

    Article  Google Scholar 

  • Boehrer, B., and M. Schultze, 2008: Stratification of lakes. Rev. Geophys., 46, RG2005, doi: 10.1029/2006RG000210.

    Article  Google Scholar 

  • Chai, A., and E. Kit, 1991: Experiments on entrainment in an annulus with and without velocity gradient across the density interface. Exp. Fluids, 11, 45–57, doi: 10.1007/BF00198431.

    Article  Google Scholar 

  • Cheng, X., Y. W. Wang, C. Hu, et al., 2016: The lake–air exchange simulation of a lake model over eastern Taihu Lake based on the E–ε turbulent kinetic energy closure thermodynamic process. Acta Meteor. Sinica, 74, 633–645, doi: 10.11676/qxxb2016.043. (in Chinese)

    Article  Google Scholar 

  • Chu, C. R., and C. K. Soong, 1997: Numerical simulation of windinduced entrainment in a stably stratified water basin. J. Hydraul. Res., 35, 21–42, doi: 10.1080/00221689709498642.

    Article  Google Scholar 

  • Chu, P. C., and C. W. Fan, 2011: Maximum angle method for determining mixed layer depth from seaglider data. J. Oceanogr., 67, 219–230, doi: 10.1007/s10872-011-0019-2.

    Article  Google Scholar 

  • Churchill, J. H., and W. C. Kerfoot, 2007: The impact of surface heat flux and wind on thermal stratification in Portage Lake, Michigan. J. Great Lakes Res., 33, 143–155, doi: 10.3394/0380-1330(2007)33[143:TIOSHF]2.0.CO;2.

    Article  Google Scholar 

  • Condie, S. A., and I. T. Webster, 2002: Stratification and circulation in a shallow turbid waterbody. Environ. Fluid Mech., 2, 177–196, doi: 10.1023/A:1019898931829.

    Article  Google Scholar 

  • Crawford, G. B., and R. W. Collier, 1997: Observations of a deepmixing event in Crater Lake, Oregon. Limnol. Oceanogr., 42, 299–306, doi: 10.4319/lo.1997.42.2.0299.

    Article  Google Scholar 

  • Deng, B., S. D. Liu, W. Xiao, et al., 2013: Evaluation of the CLM4 Lake Model at a large and shallow freshwater lake. J. Hydrometeorol., 14, 636–649, doi: 10.1175/JHM-D-12-067.1.

    Article  Google Scholar 

  • Farrow, D. E., and C. L. Stevens, 2003: Numerical modelling of a surface-stress driven density-stratified fluid. J. Eng. Math., 47, 1–16, doi: 10.1023/A:1025519724504.

    Article  Google Scholar 

  • Fee, E. J., R. E. Hecky, S. E. M. Kasian, et al., 1996: Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield Lakes. Limnol. Oceanogr., 41, 912–920, doi: 10.4319/lo.1996.41.5.0912.

    Article  Google Scholar 

  • Fonseca, B. M., and C. E. de M. Bicudo, 2008: Phytoplankton seasonal variation in a shallow stratified eutrophic reservoir (Garças Pond, Brazil). Hydrobiologia, 600, 267–282, doi: 10.1007/s10750-007-9240-9.

    Article  Google Scholar 

  • Giles, C. D., P. D. F. Isles, T. Manley, et al., 2016: The mobility of phosphorus, iron, and manganese through the sediment-water continuum of a shallow eutrophic freshwater lake under stratified and mixed water-column conditions. Biogeochemistry, 127, 15–34, doi: 10.1007/s10533-015-0144-x.

    Article  Google Scholar 

  • Godo, T., K. Kato, H. Kamiya, et al., 2001: Observation of windinduced two-layer dynamics in Lake Nakaumi, a coastal lagoon in Japan. Limnology, 2, 137–143, doi: 10.1007/s102010170009.

    Article  Google Scholar 

  • Gonçalves, M. A., F. C. Garcia, and G. F. Barroso, 2016: Morphometry and mixing regime of a tropical lake: Lake Nova (Southeastern Brazil). An. Acad. Bras. Cienc., 88, 1341–1356, doi: 10.1590/0001-3765201620150788.

    Article  Google Scholar 

  • Heo, K.-Y., and K.-J. Ha, 2010: A coupled model study on the formation and dissipation of sea fogs. Mon. Wea. Rev., 138, 1186–1205, doi: 10.1175/2009MWR3100.1.

    Article  Google Scholar 

  • Hu, W. P., S. E. Jørgensen, Z. Fabing, et al., 2011: A model on the carbon cycling in Lake Taihu, China. Ecol. Model., 222, 2973–2991, doi: 10.1016/j.ecolmodel.2011.04.018.

    Article  Google Scholar 

  • Kalff, J., 2002: Temperature cycles, lake stratification, and heat budgets. Limnology: Inland Water Ecosystems, J. Kalff, Ed. Prentice Hall, Upper Saddle River, N. J., 592 pp.

    Google Scholar 

  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105, doi: 10.1029/2000JC900072.

  • Lee, X. H., S. D. Liu, W. Xiao, et al., 2014: The Taihu Eddy Flux Network: An observational program on energy, water, and greenhouse gas fluxes of a large freshwater lake. Bull. Amer. Meteor. Soc., 95, 1583–1594, doi: 10.1175/BAMS-D-13-00136.1.

    Article  Google Scholar 

  • Lewis, W. M., Jr., 1983: A revised classification of lakes based on mixing. Can. J. Fish. Aquat. Sci., 40, 1779–1787, doi: 10.1139/f83-207.

    Article  Google Scholar 

  • Liu, H. Z., J. W. Feng, J. H. Sun, et al., 2015: Eddy covariance measurements of water vapor and CO2 fluxes above the Erhai Lake. Sci. China Earth Sci., 58, 317–328, doi: 10.1007/s11430-014-4828-1.

    Article  Google Scholar 

  • Michalski, J., and U. Lemmin, 1995: Dynamics of vertical mixing in the hypolimnion of a deep lake: Lake Geneva. Limnol. Oceanogr., 40, 809–816, doi: 10.4319/lo.1995.40.4.0809.

    Article  Google Scholar 

  • Monterey, G., and S. Levitus, 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA Atlas NESDIS 14, Washington, D.C., U.S. Government Printing Office, 96 pp.

    Google Scholar 

  • Oswald, C. J., and W. R. Rouse, 2004: Thermal characteristics and energy balance of various-size Canadian shield lakes in the Mackenzie River Basin. J. Hydrometeorol., 5, 129–144, doi: 10.1175/1525-7541(2004)005<0129:TCAEBO>2.0.CO;2.

    Article  Google Scholar 

  • Pernica, P., M. G. Wells, and S. MacIntyre, 2014: Persistent weak thermal stratification inhibits mixing in the epilimnion of north-temperate Lake Opeongo, Canada. Aquat. Sci., 76, 187–201, doi: 10.1007/s00027-013-0328-1.

    Article  Google Scholar 

  • Qin, B. Q., P. Z. Xu, Q. L. Wu, et al., 2007: Environmental issues of Lake Taihu, China. Hydrobiologia, 581, 3–14, doi: 10.1007/s10750-006-0521-5.

    Article  Google Scholar 

  • Qiu, Y. Y., 2013: Numerical simulation study of the effect of underlying surface obstacles on observation environment. Master Degree dissertation, Nanjing University of Information Science & Technology, China, 53 pp. (in Chinese)

    Google Scholar 

  • Samal, N. R., K. D. Jöhnk, F. Peeters, et al., 2008: Mixing and internal waves in a small stratified Indian lake: Subhas Sarobar. Monitoring and Modelling Lakes and Coastal Environments. P. K. Mohanty, Ed., Springer Publishing, Berlin, 91–100.

    Chapter  Google Scholar 

  • Schadlow, S. G., and D. P. Hamilton, 1995: Effect of major flow diversion on sediment nutrient release in a stratified reservoir. Mar. Freshwater Res., 46, 189–195, doi: 10.1071/MF9950189.

    Google Scholar 

  • Socolofsky, S. A., and G. H. Jirka, 2005: Mixing in lakes and reservoirs. Special Topics in Mixing and Transport Processes in the Environment. S. A. Socolofsky, and G. H. Jirka, Eds., College Station, TX, Texas A&M University, 230 pp.

    Google Scholar 

  • Sprintall, J., and M. Tomczak, 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97, 7305–7316, doi: 10.1029/92JC00407.

    Article  Google Scholar 

  • Sun, S. F., J. F. Yan, N. Xia, et al., 2007: Development of a model for water and heat exchange between the atmosphere and a water body. Adv. Atmos. Sci., 24, 927–938, doi: 10.1007/s00376-007-0927-7.

    Article  Google Scholar 

  • Tuan, N. V., K. Hamagami, K. Mori, et al., 2009: Mixing by windinduced flow and thermal convection in a small, shallow and stratified lake. Paddy Water Environ., 7, 83–93, doi: 10.1007/s10333-009-0158-x. von

    Article  Google Scholar 

  • Einem, J., and W. Granéli, 2010: Effects of fetch and dissolved organic carbon on epilimnion depth and light climate in small forest lakes in southern Sweden. Limnol. Oceanogr., 55, 920–930, doi: 10.4319/lo.2010.55.2.0920.

    Article  Google Scholar 

  • Wang, M. D., J. Z. Hou, and Y. B. Lei, 2014: Classification of Tibetan Lakes based on variations in seasonal lake water temperature. Chinese Sci. Bull., 59, 4847–4855, doi: 10.1007/s11434-014-0588-8.

    Article  Google Scholar 

  • Wang, S., X. Qian, B. P. Han, et al., 2012: Effects of local climate and hydrological conditions on the thermal regime of a reservoir at tropic of cancer, in southern China. Water Res., 46, 2591–2604, doi: 10.1016/j.watres.2012.02.014.

    Article  Google Scholar 

  • Wang, W., 2014: Energy budget at Lake Taihu and its response to climate change. Ph.D. dissertation, Nanjing University of Information Science & Technology, China, 140 pp. (in Chinese)

    Google Scholar 

  • Wilhelm, S., and R. Adrian, 2008: Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw. Biol., 53, 226–237, doi: 10.1111/j.1365-2427.2007.01887.x.

    Article  Google Scholar 

  • Zhang, L., B. Zhu, J. H. Gao, et al., 2017: Impact of Taihu Lake on city ozone in the Yangtze River Delta. Adv. Atmos. Sci., 34, 226–234, doi: 10.1007/s00376-016-6099-6.

    Article  Google Scholar 

  • Zhang, Y. L., Z. X. Wu, M. L. Liu, et al., 2014: Thermal structure and response to long-term climatic changes in Lake Qiandaohu, a deep subtropical reservoir in China. Limnol. Oceanogr., 59, 1193–1202, doi: 10.4319/lo.2014.59.4.1193.

    Article  Google Scholar 

  • Zhao, L. L., G. W. Zhu, Y. F. Chen, et al., 2011: Thermal stratification and its influence factors in a large-sized and shallow lake Taihu. Adv. Water Sci., 22, 844–850. (in Chinese)

    Article  Google Scholar 

  • Zhao, Q. H., J. H. Sun, and G. W. Zhu, 2012: Simulation and exploration of the mechanisms underlying the spatiotemporal distribution of surface mixed layer depth in a large shallow lake. Adv. Atmos. Sci., 29, 1360–1373, doi: 10.1007/s00376-012-1262-1.

    Article  Google Scholar 

Download references

Acknowledgments

I would like to express my heartfelt thanks to all those who have helped me in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongwei Wang.

Additional information

Supported by the National Natural Science Foundation of China (41275024, 41575147, 41505005, and 41475141), Natural Science Foundation of Jiangsu Province (BK20150900), Startup Funds for Introduced Talents of Nanjing University of Information Science & Technology (2014r046), Ministry of Education of China grant PCSIRT, and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, Y., Zhang, Z. et al. Diurnal and Seasonal Variations of Thermal Stratification and Vertical Mixing in a Shallow Fresh Water Lake. J Meteorol Res 32, 219–232 (2018). https://doi.org/10.1007/s13351-018-7099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7099-5

Key words

Navigation