Skip to main content
Log in

Observational characteristics of cloud vertical profiles over the continent of East Asia from the CloudSat data

  • Published:
Acta Meteorologica Sinica Aims and scope Submit manuscript

Abstract

The CloudSat satellite data from June 2006 to April 2011 are used to investigate the characteristics of cloud vertical profiles over East Asia (20°–50°N, 80°–120°E), with particular emphasis on the profiles of precipitative clouds in comparison with those of nonprecipitative clouds, as well as the seasonal variations of these profiles. There are some obvious differences between the precipitative and nonprecipitative cloud profiles. Generally, precipitative clouds mainly locate below 8 km with radar reflectivity in the range of −20 to 15 dBZ and maximum values appearing within 2–4-km height, and the clouds usually reach the ground; while nonprecipitative clouds locate in the layers of 4–12 km with radar reflectivity between −28 and 0 dBZ and maximum values within 8–10-km height. There are also some differences among the liquid precipitative, solid precipitative, and possible drizzle precipitative cloud profiles. In precipitative clouds, radar reflectivity increases rapidly from 11 to 7 km in vertical, implying that condensation and collision-coalescence processes play a crucial role in the formation of large-size drops. The frequency distribution of temperature at −15°C is consistent with the highest frequency of radar reflectivity in solid precipitative clouds, which suggests that the temperatures near −15°C are conductive to deposition and accretion processes. The vertical profiles of liquid precipitative clouds show almost the same distributions in spring, summer, and autumn but with differences in winter at mainly lower levels. In contrast, the vertical profiles of solid precipitative clouds change from spring to winter with an alternate double and single high-frequency core, which is consistent with variations of the frequency distribution of temperature at −15°C. The vertical profiles of nonprecipitative clouds show a little change with season. The observations also show that the precipitation events over East Asia are mostly related to deep convective clouds and nimbostratus clouds. These results are expected to be useful for evaluation of weather and climate models and for improvement of microphysical parameterizations in numerical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, R. T., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114(D8), D00A23, doi:10.1029/2008jd010049.

    Article  Google Scholar 

  • Barker, D. M., W. Huang, Y. R. Guo, et al., 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132(4), 897–914, doi:10.1175/1520-0493 (2004)132〈0897:atvdas〉2.0.co;2.

    Article  Google Scholar 

  • Barker, H. W., A. V. Korolev, D. R. Hudak, et al., 2008: A comparison between CloudSat and aircraft data for a multilayer, mixed phase cloud system during the Canadian CloudSat-CALIPSO Validation Project. J. Geophys. Res., 113(D8), D00A16, doi:10.1029/2008jd009971.

    Article  Google Scholar 

  • Bodas-Salcedo, A., M. J. Webb, M. E. Brooks, et al., 2008: Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities. J. Geophys. Res., 113(D8), D00A13, doi:10.1029/2007jd009620.

    Article  Google Scholar 

  • Botton, L. J., 1960: Radar Meteorology. University of Chicago Press, Chicago, 79–84.

    Google Scholar 

  • Carey, L. D., J. Niu, P. Yang, et al., 2008: The vertical profile of liquid and ice water content in midlatitude mixed-phase altocumulus clouds. J. Appl. Meteor. Climatol., 47(9), 2487–2495, doi: 10.1175/2008JAMC1885.1.

    Article  Google Scholar 

  • Chen Wenxuan, Wang Jun, and Liu Wen, 1999: Analysis of the microphysical precipitation mechanism for a cold vortex process. J. Appl. Meteor. Sci., 10(2), 190–198. (in Chinese)

    Google Scholar 

  • Donaldson, R. J., 1961: Radar reflectivity profiles in thunderstorms. J. Meteor., 18(3), 292–305, doi: 10.1175/1520-0469(1961)018〈0292:rrpit〉2.0.co;2.

    Article  Google Scholar 

  • Engholm, C. D. K., and S. W. Troxel, 1990: Beam Filling Loss Adjustments for ASR-9 Weather Channel Reflectivity Estimates. MIT Lincoln Laboratory, Lexington, MA, Project Report, 4–33.

    Google Scholar 

  • Fu Yunfei, Lin Yihua, Liu Guosheng, et al., 2003: Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR. Adv. Atmos. Sci., 20(4), 511–529.

    Article  Google Scholar 

  • Greenwald, T. J., Y.-K. Lee, J. A. Otkin, et al., 2010: Evaluation of midlatitude clouds in a large-scale high-resolution simulation using CloudSat observations. J. Geophys. Res., 115(D19), D19203, doi: 10.1029/2009jd013552.

    Article  Google Scholar 

  • Gultepe, I., and G. A. Isaac, 1997: Liquid water content and temperature relationship from aircraft observations and its applicability to GCMs. J. Climate, 10(3), 446–452, doi: 10.1175/1520-0442(1997)010〈0446:LWCATR〉2.0.CO;2.

    Article  Google Scholar 

  • Hobbs, P. V., S. Chang, and J. D. Locatelli, 1974: The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res., 79(15), 2199–2206, doi: 10.1029/JC079i015p02199.

    Article  Google Scholar 

  • Jakob, C., and S. A. Klein, 1999: The role of vertically varying cloud fraction in the parameterization of microphysical processes in the ECMWF model. Quart. J. Roy. Meteor. Soc., 125, 941–965.

    Article  Google Scholar 

  • Korolev, A. V., G. A. Isaac, J. W. Strapp, et al., 2007: In-situ measurements of liquid water content profiles in midlatitude stratiform clouds. Quart. J. Roy. Meteor. Soc., 133(628), 1693–1699, doi: 10.1002/qj.147.

    Article  Google Scholar 

  • Li Shuri, 2006: Case study of cloud and precipitation microphysics structure over Northwest China. Meteor. Mon., 32(8), 59–63. (in Chinese)

    Google Scholar 

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22(6), 1065–1092.

    Article  Google Scholar 

  • —, and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139(3), 1013–1035, doi: 10.1175/2010 MWR3293.1.

    Article  Google Scholar 

  • Liu, G. S., and Y. F. Fu, 2001: The characteristics of tropical precipitation profiles as inferred from satellite radar measurements. J. Meteor. Soc. Japan (Ser. II), 79(1), 131–143.

    Article  Google Scholar 

  • Liu, Y., T. T. Warner, J. F. Bowers, et al., 2008: The operational mesogamma-scale analysis and forecast system of the U.S. army test and evaluation command. Part I: Overview of the modeling system, the forecast products, and how the products are used. J. Appl. Meteor. Climatol., 47(4), 1077–1092.

    Article  Google Scholar 

  • Luo, Y., R. Zhang, and H. Wang, 2009: Comparing occurrences and vertical structures of hydrometeors between eastern China and the Indian monsoon region using CloudSat/CALIPSO data. J. Climate, 22(4), 1052–1064.

    Article  Google Scholar 

  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57(2), 295–311.

    Article  Google Scholar 

  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137(3), 991–1007.

    Article  Google Scholar 

  • Paquita, Z., and M. Brian, 2008: Cloud vertical structure observed from space and ship over the Bay of Bengal and the eastern tropical Pacific. J. Meteor. Soc. Japan (Ser. II), 86A, 205–218.

    Article  Google Scholar 

  • Poore, K. D., J. Wang, and W. B. Rossow, 1995: Cloud layer thicknesses from a combination of surface and upper-air observations. J. Climate, 8, 550–568.

    Article  Google Scholar 

  • Protat, A., D. Bouniol, J. Delanoë, et al., 2009: Assessment of Cloudsat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J. Atmos. Oceanic Technol., 26(9), 1717–1741, doi: 10.1175/2009jtecha1246.1.

    Article  Google Scholar 

  • Randall, D. A., Harshvardhan, D. A. Dazlich, et al., 1989: Interactions among radiation, convection, and largescale dynamics in a general circulation model. J. Atmos. Sci., 46(13), 1943–1970, doi:10.1175/1520-0469 (1989)046〈1943:IARCAL〉2.0.CO;2.

    Article  Google Scholar 

  • Rogers, D. C., 1974: The Aggregation of Natural Ice Crystals. Department of Atmospheric Resources Engineering, Research Rep. AR 110, University of Wyoming, Laramie, WY, 35 pp.

    Google Scholar 

  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 1793–1796.

    Article  Google Scholar 

  • —, and W. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405, 440–442.

    Article  Google Scholar 

  • Slingo, J. M., and A. Slingo, 1991: The response of a general circulation model to cloud longwave radiative forcing. Part II: Further studies. Quart. J. Roy. Meteor. Soc., 117(498), 333–364, doi: 10.1002/qj.49711749805.

    Article  Google Scholar 

  • Smedsmo, J. L., E. Foufoula-Georgiou, V. Vuruputur, et al., 2005: On the vertical structure of modeled and observed deep convective storms: Insights for precipitation retrieval and microphysical parameterization. J. Appl. Meteor., 44(12), 1866–1884, doi: 10.1175/jam2306.1.

    Article  Google Scholar 

  • Squires, P., 1958: The microstructure and colloidal stability of warm clouds. Part I: The relation between structure and stability. Tellus, 10(2), 256–261, doi: 10.1111/j.2153-3490.1958.tb02011.x.

    Article  Google Scholar 

  • Stephens, G. L., D. G. Vane, S. Tanelli, et al., 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113(D8), D00A18, doi: 10.1029/2008jd009982.

    Article  Google Scholar 

  • Vanderlei Martins, J., A. Marshak, L. A. Remer, et al., 2007: Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature. Atmos. Chem. Phys. Discuss., 7(2), 4481–4519, doi:10.5194/acpd-7-4481-2007.

    Article  Google Scholar 

  • Waliser, D. E., J.-L. F. Li, C. P. Woods, et al., 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114(D8), D00A21, doi: 10.1029/2008jd010015.

    Article  Google Scholar 

  • Wang Biao, 2011: Review of vertical profile observations of atmosphere in climate change studies. J. Atmos. Environ. Optics, 6(1), 2–10. (in Chinese)

    Google Scholar 

  • Wang, J., and W. B. Rossow, 1998: Effects of cloud vertical structure on atmospheric circulation in the GISS GCM. J. Climate, 11(11), 3010–3029, doi: 10.1175/1520-0442(1998)011〈3010:EOCVSO〉2.0.CO;2.

    Article  Google Scholar 

  • Wang Shuaihui, Han Zhigang, Yao Zhigang, et al., 2011: Analysis on cloud vertical structure over China and its neighborhood based on CloudSat data. Plateau Meteor., 30(1), 38–52. (in Chinese)

    Google Scholar 

  • Wang Yangfeng, Lei Hengchi, Wu Yuxia, et al., 2005: Size distributions of the water drops in the warm layer of stratiform clouds in Yan’an. J. Nanjing Inst. Meteor., 28(8), 787–793. (in Chinese)

    Google Scholar 

  • Wang, Z., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40(10), 1665–1682.

    Article  Google Scholar 

  • Willis, P. T., and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46(13), 2008–2025, doi: 10.1175/1520-0469(1989)046〈2008:sotmli〉2.0.co;2.

    Article  Google Scholar 

  • Wu Dui, 1987: The characteristics of cloud droplets size in precipitable stratiform clouds during June–July over Ningxia region. Meteor. Mon., 13 (9), 48–50. (in Chinese)

    Google Scholar 

  • Xu, W., E. J. Zipser, and C. Liu, 2009: Rainfall characteristics and convective properties of Mei-yu precipitation systems over South China, Taiwan region, and the South China Sea. Part I: TRMM observations. Mon. Wea. Rev., 137(12), 4261–4275, doi: 10.1175/2009mwr2982.1.

    Article  Google Scholar 

  • Xue, M., D. Wang, J. Gao, et al., 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139–170.

    Article  Google Scholar 

  • Yin, J., D. Wang, and G. Zhai, 2011: Long-term in-situ measurements of the cloud-precipitation microphysical properties over East Asia. Atmos. Res., 102(1–2), 206–217.

    Article  Google Scholar 

  • Yuan, J., R. A. Houze, and A. J. Heymsfield, 2011: Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci., 68(8), 1653–1674, doi: 10.1175/2011jas3687.1.

    Article  Google Scholar 

  • Yuter, S. E., and R. A. Houze, 1995: Threedimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea Rev., 123(7), 1941–1963, doi:p10.1175/1520-0493 (1995)123〈1941:tdkame〉2.0.co;2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Wang  (王东海).

Additional information

Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY200806007 and GYHY201006014), National Natural Science Foundation of China (40875022, 40633016, and 40975021), National Basic Research and Development (973) Program of China (2012CB417204), and Basic Research Project of the State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences (2008LASWZI01).

Chinese version to be published.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, J., Wang, D., Zhai, G. et al. Observational characteristics of cloud vertical profiles over the continent of East Asia from the CloudSat data. Acta Meteorol Sin 27, 26–39 (2013). https://doi.org/10.1007/s13351-013-0104-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-013-0104-0

Key words

Navigation