Skip to main content

Advertisement

Log in

PEI fluorination reduces toxicity and promotes liver-targeted siRNA delivery

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Polyethyleneimine (PEI) has been extensively investigated as an efficient carrier for nucleic acid delivery. Yet, it suffers from a high toxicity profile that hinders clinical translation. Fluorination has proven to be a valid approach to reduce the cytotoxicity of PEI and improve the in vitro siRNA delivery potency. Hydrophobicity and lipophobicity can be controllably introduced into the side chains of PEI. However, the effect of fluorination on siRNA delivery in vivo, particularly the biodistribution of siRNA polyplex nanoparticles with fluorinated PEIs, has not been extensively explored. Here, we introduce two series of fluorinated PEIs via amidation with ethyl trifluoroacetate and perfluorobutyryl chloride. Fluorination substantially improved the performance of PEI for siRNA delivery by reducing the cytotoxicity to MDA-MB-231 cells. Importantly, fluorinated PEI enabled the major accumulation of siRNA polyplex nanoparticles in the liver while non-fluorinated PEI delivered siRNA nanoparticles mainly to the lungs after intravenous administration to mice. It is envisioned that fluorination may be an important general strategy for lowering toxicity of cationic polymers, and that the fluorination-induced alteration of biodistribution may be applicable for improved delivery to different organs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Materials, methods, and additional figures are included in the Supplementary Material and available on the website.

References

  1. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8(2):129–38.

    Article  CAS  Google Scholar 

  2. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4(7):581–93.

    Article  CAS  Google Scholar 

  3. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12(11):967–77.

    Article  CAS  Google Scholar 

  4. Kim HJ, Kim A, Miyata K, Kataoka K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev. 2016;104:61–77.

    Article  CAS  Google Scholar 

  5. Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 2016;44(14):6518–48.

    Article  Google Scholar 

  6. Zhou K, Nguyen LH, Miller JB, Yan Y, Kos P, Xiong H, et al. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model. Proc Natl Acad Sci U S A. 2016;113(3):520–5.

    Article  CAS  Google Scholar 

  7. Hao J, Kos P, Zhou K, Miller JB, Xue L, Yan Y, et al. Rapid synthesis of a lipocationic polyester library via ring-opening polymerization of functional valerolactones for efficacious siRNA delivery. J Am Chem Soc. 2015;137(29):9206–9.

    Article  CAS  Google Scholar 

  8. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37.

    Article  CAS  Google Scholar 

  9. Yan Y, Xiong H, Zhang X, Cheng Q, Siegwart DJ. Systemic mRNA delivery to the lungs by functional polyester-based carriers. Biomacromolecules. 2017;18(12):4307–15.

    Article  CAS  Google Scholar 

  10. Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective ORgan Targeting (SORT) nanoparticles for tissue specific mRNA delivery and CRISPR/Cas gene editing. Nat Nanotechnol. 2020;15(4):313–20.

    Article  CAS  Google Scholar 

  11. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.

    Article  CAS  Google Scholar 

  12. Philipp A, Zhao XB, Tarcha P, Wagner E, Zintchenko A. Hydrophobically modified oligoethylenimines as highly efficient transfection agents for siRNA delivery. Bioconjug Chem. 2009;20(11):2055–61.

    Article  CAS  Google Scholar 

  13. Schroeder A, Dahlman JE, Sahay G, Love KT, Jiang S, Eltoukhy AA, et al. Alkane-modified short polyethyleneimine for siRNA delivery. J Control Release. 2012;160(2):172–6.

    Article  CAS  Google Scholar 

  14. Yan Y, Zhou K, Xiong H, Miller JB, Motea EA, Boothman DA, et al. Aerosol delivery of stabilized polyester-siRNA nanoparticles to silence gene expression in orthotopic lung tumors. Biomaterials. 2017;118:84–93.

    Article  CAS  Google Scholar 

  15. Siegwart DJ, Whitehead KA, Nuhn L, Sahay G, Cheng H, Jiang S, et al. Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc Natl Acad Sci U S A. 2011;108(32):12996–3001.

    Article  CAS  Google Scholar 

  16. Kim M-C, Lin MM, Sohn Y, Kim J-J, Kang BS, Kim DK. Polyethyleneimine-associated polycaprolactoneSuperparamagnetic iron oxide nanoparticles as a gene delivery vector. J Biomed Mater Res B. 2017;105(1):145–54.

    Article  CAS  Google Scholar 

  17. Bus T, Englert C, Reifarth M, Borchers P, Hartlieb M, Vollrath A, et al. 3rd generation poly(ethylene imine)s for gene delivery. J Mater Chem B. 2017;5(6):1258–74.

    Article  CAS  Google Scholar 

  18. Thomas M, Lu JJ, Ge Q, Zhang CC, Chen JZ, Klibanov AM. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci U S A. 2005;102(16):5679–84.

    Article  CAS  Google Scholar 

  19. Schaffert D, Troiber C, Salcher EE, Frohlich T, Martin I, Badgujar N, et al. Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. Angew Chem Int Ed. 2011;50(38):8986–9.

    Article  CAS  Google Scholar 

  20. Geihe EI, Cooley CB, Simon JR, Kiesewetter MK, Edward JA, Hickerson RP, et al. Designed guanidinium-rich amphipathic oligocarbonate molecular transporters complex, deliver and release siRNA in cells. Proc Natl Acad Sci U S A. 2012;109(33):13171–6.

    Article  CAS  Google Scholar 

  21. Dahlman JE, Barnes C, Khan OF, Thiriot A, Jhunjunwala S, Shaw TE, et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nanotechnol. 2014;9(8):648–55.

    Article  CAS  Google Scholar 

  22. Brissault B, Leborgne C, Scherman D, Guis C, Kichler A. Synthesis of poly(propylene glycol)-block-polyethylenimine triblock copolymers for the delivery of nucleic acids. Macromol Biosci. 2011;11(5):652–61.

    Article  CAS  Google Scholar 

  23. Boisdron-Celle M, Menei PH, Benoit JP. Preparation and characterization of 5-fluorouracil-loaded microparticles as biodegradable anticancer drug carriers. J Pharm Pharmacol. 1995;47(2):108–14.

    Article  CAS  Google Scholar 

  24. Jud L, Košutić M, Schwarz V, Hartl M, Kreutz C, Bister K, et al. Expanding the scope of 2′-SCF3 modified RNA. Chem Eur J. 2015;21(29):10400–7.

    Article  CAS  Google Scholar 

  25. Wang M, Liu H, Li L, Cheng Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat Commun. 2014;5(1):3053.

  26. Lv J, Chang H, Wang Y, Wang MM, Xiao JR, Zhang Q, et al. Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery. J Mater Chem B. 2015;3(4):642–50.

    Article  CAS  Google Scholar 

  27. Wu T, Wang L, Ding S, You Y. Fluorinated PEG‐polypeptide polyplex micelles have good serum‐resistance and low cytotoxicity for gene delivery. Macromol Biosci. 2017;17(8):1700114.

  28. Cai XJ, Jin RR, Wang JL, Yue D, Jiang Q, Wu Y, et al. Bioreducible fluorinated peptide dendrimers capable of circumventing various physiological barriers for highly efficient and safe gene delivery. ACS Appl Mater Interfaces. 2016;8(9):5821–32.

    Article  CAS  Google Scholar 

  29. Fisicaro E, Compari C, Bacciottini F, Contardi L, Pongiluppi E, Barbero N, et al. Nonviral gene-delivery by highly fluorinated gemini bispyridinium surfactant-based DNA nanoparticles. J Colloid Interface Sci. 2017;487:182–91.

    Article  CAS  Google Scholar 

  30. Wang LH, Wu DC, Xu HX, You YZ. High DNA-binding affinity and gene-transfection efficacy of bioreducible cationic nanomicelles with a fluorinated core. Angew Chem Int Ed. 2016;55(2):755–9.

    Article  CAS  Google Scholar 

  31. Chen G, Wang K, Ullah A, Zhou Y, Ding L, Hu Q, et al. Self-assembled fluoropolycation nanomicelles for improved siRNA silencing. J Control Release. 2017;259:e35–e6.

    Article  Google Scholar 

  32. Liu X, Wang Y, Chen C, Tintaru A, Cao Y, Liu J, et al. A fluorinated bola-amphiphilic dendrimer for on-demand delivery of siRNA, via specific response to reactive oxygen species. Adv Funct Mater. 2016;26(47).

  33. Chen G, Wang K, Hu Q, Ding L, Yu F, Zhou Z, et al. Combining fluorination and bioreducibility for improved siRNA polyplex delivery. ACS Appl Mater Interfaces. 2017;9(5):4457–66.

    Article  CAS  Google Scholar 

  34. Cai X, Zhu H, Zhang Y, Gu Z. Highly efficient and safe delivery of VEGF siRNA by bioreducible fluorinated peptide dendrimers for cancer therapy. ACS Appl Mater Interfaces. 2017;9(11):9402–15.

    Article  CAS  Google Scholar 

  35. Wang H, Wang Y, Wang Y, Hu J, Li T, Liu H, et al. Self-assembled fluorodendrimers combine the features of lipid and polymeric vectors in gene delivery. Angew Chem Int Ed. 2015;54(40):11647–51.

    Article  CAS  Google Scholar 

  36. Gong J-H, Wang Y, Xing L, Cui P-F, Qiao J-B, He Y-J, et al. Biocompatible fluorinated poly(beta-amino ester)s for safe and efficient gene therapy. Int J Pharm. 2018;535(1-2):180–93.

    Article  CAS  Google Scholar 

  37. Xiao Y-P, Zhang J, Liu Y-H, Huang Z, Wang B, Zhang Y-M, et al. Cross-linked polymers with fluorinated bridges for efficient gene delivery. J Mater Chem B. 2017;5(43):8542–53.

    Article  CAS  Google Scholar 

  38. Johnson ME, Shon J, Guan BM, Patterson JP, Oldenhuis NJ, Eldredge AC, et al. Fluorocarbon modified low-molecular-weight polyethylenimine for siRNA delivery. Bioconjug Chem. 2016;27(8):1784–8.

    Article  CAS  Google Scholar 

  39. Wang MM, Cheng YY. Structure-activity relationships of fluorinated dendrimers in DNA and siRNA delivery. Acta Biomater. 2016;46:204–10.

    Article  Google Scholar 

  40. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

    Article  CAS  Google Scholar 

  41. Yan Y, Liu L, Xiong H, Miller JB, Zhou K, Kos P, et al. Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. Proc Natl Acad Sci U S A. 2016;113(39):E5702–E10.

    Article  CAS  Google Scholar 

  42. Gunther M, Lipka J, Malek A, Gutsch D, Kreyling W, Aigner A. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. Eur J Pharm Biopharm. 2011;77(3):438–49.

    Article  Google Scholar 

  43. Gao S, Dagnaes-Hansen F, Nielsen EJB, Wengel J, Besenbacher F, Howard KA, et al. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther. 2009;17(7):1225–33.

    Article  CAS  Google Scholar 

Download references

Funding

D.J.S. received financial support from the Cancer Prevention and Research Institute of Texas (CPRIT) (R1212), the Welch Foundation (I-1855), the American Cancer Society (RSG-17-012-01), and the Mary Kay Foundation (049-15). Y.Y. received financial support from Zhejiang Provincial Natural Science Foundation of China (LY19B040004).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors.

Corresponding author

Correspondence to Daniel J. Siegwart.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Yan, Y., Kos, P. et al. PEI fluorination reduces toxicity and promotes liver-targeted siRNA delivery. Drug Deliv. and Transl. Res. 11, 255–260 (2021). https://doi.org/10.1007/s13346-020-00790-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00790-9

Keywords

Navigation