Skip to main content

Advertisement

Log in

The role of immunity and inflammation in the development of diabetic complications

  • Review Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Our group has carried out pivotal clinical studies on large cohorts of type 1 and type 2 diabetes to determine the impact of modified LDL-IC as well as inflammatory cytokines/adipokines and acute-phase reactant proteins in the development of diabetic complications. We have demonstrated that high levels of specific LDL modifications in circulating ICs correlate with increased risk for the development and progression of macrovascular disease, nephropathy, and retinopathy, frequently exceeding conventional risk factors in their predictive power. In cardiovascular disease, differences in the type of LDL modification and the stage of disease seem to lead to/predict different outcomes. The differences observed with ICs containing different types of modified LDL raises interesting questions about the role of the predominant LDL modification in the ICs and the cellular patterns of macrophage activation, survival, and apoptosis that result from LDL-IC ingestion. The differences observed in the predictive power of modified LDL-ICs at different stages of CVD development strongly suggest that modified LDL-ICs are causally related with the development of atherosclerosis and/or plaque instability. The association of cytokines/adipokines and acute-phase reactant proteins with the development of complications in type 1 diabetes is less strong than that observed with modified LDL-ICs and occurs at a later phase of the development of complications. In conclusion, the human humoral autoimmune response to modified forms of LDL is a typical adaptive response, with a switch to IgG synthesis and increasing antibody affinity that leads to the release of proinflammatory mediators, and it has unquestionable pathogenic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.

    Article  PubMed  CAS  Google Scholar 

  2. Miller YI, Choi SH, Fang L, Tsimikas S. Lipoprotein modification and macrophage uptake: role of pathologic cholesterol transport in atherogenesis. Subcell Biochem. 2010;51:229–51.

    Article  PubMed  CAS  Google Scholar 

  3. Holvoet P. Endothelial dysfunction, oxidation of low-density lipoprotein, and cardiovascular disease. Ther Apher. 1999;3:287–93.

    Article  PubMed  CAS  Google Scholar 

  4. Lopes-Virella MF, Virella G. The role of immune and inflammatory processes in the development of macrovascular disease in diabetes. Front Biosci. 2003;8:s750–68.

    Article  PubMed  CAS  Google Scholar 

  5. Penn MS, Chisolm GM. Oxidized lipoproteins, altered cell function and atherosclerosis. Atherosclerosis. 1994;108:S21–9.

    Article  PubMed  Google Scholar 

  6. Henriksen T, Mahoney ME, Steinberg D. Enhanced macrophage degradation of biologically modified low density lipoprotein. Arteriosclerosis. 1983;3:149–58.

    Article  PubMed  CAS  Google Scholar 

  7. Arai K, Kita T, Yokode M, Narumiya S, Kawai C. Multiple receptors for modified LDL in mouse peritoneal macrophages: different uptake mechanisms for acetylated and oxidized LDL. Biochem Biophys Res Commun. 1989;159:1375–9.

    Article  PubMed  CAS  Google Scholar 

  8. Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA. CD36 is a receptor for oxidized LDL. J Biol Chem. 1993;268:11811–8.

    PubMed  CAS  Google Scholar 

  9. Sparrow CP, Parthasarathy S, Steinberg D. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. J Biol Chem. 1989;264:2599–604.

    PubMed  CAS  Google Scholar 

  10. Hoff HF, O’Neil J, Chisolm GM, Cole TB, Quehenberger O, Esterbauer H, Jurgens G. Modification of low density lipoprotein with 4-hydroxynonenal induces uptake by macrophages. Arteriosclerosis. 1989;9:538–49.

    Article  PubMed  CAS  Google Scholar 

  11. Fogelman AM, Schechter I, Seager J, Hokom M, Child JS, Edwards PA. Malondialdehyde alteration of low density lipoproteins leads to cholesterol ester accumulation in human monocytes/macrophages. Proc Natl Acad Sci USA. 1980;77:2214–8.

    Article  PubMed  CAS  Google Scholar 

  12. Hessler JR, Morel DW, Lewis LJ, Chisolm GM. Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis. 1983;3:215–22.

    Article  PubMed  CAS  Google Scholar 

  13. Henriksen T, Evensen SA, Carlander B. Injury to human endothelial cells in culture induced by LDL. Scand J Clin Lab Investig. 1979;39:361–4.

    Article  CAS  Google Scholar 

  14. Rajavashisth TB, Andalibi A, Territo MC. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified LDL. Nature. 1990;344:254–7.

    Article  PubMed  CAS  Google Scholar 

  15. Kugiyama K, Sakamoto T, Musumi I, Sugiyama S, Ohgushi M, Ogawa H, Horiguchi M, Yasue H. Transferrable lipids in oxidized LDL stimulate PAI-1 and inhibit tPA release from endothelial cells. Circ Res. 1993;73:335–43.

    Article  PubMed  CAS  Google Scholar 

  16. Quinn MT, Parthasarathy S, Fong LG, Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA. 1987;84:2995–8.

    Article  PubMed  CAS  Google Scholar 

  17. Berliner JA, Territo MC, Sevanian A, Raimin S, Kim JA, Bamshad B, Ester-son M, Fogelman AM. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Investig. 1990;85:1260–6.

    Article  PubMed  CAS  Google Scholar 

  18. Kume N, Cybulsky MI, Gimbrone MAJ. Lysophosphatidyl-choline, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Investig. 1992;90:1138–44.

    Article  PubMed  CAS  Google Scholar 

  19. Kahn BV, Parthasarathy SS, Alexander RW, Medford RM. Modified LDL and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Investig. 1995;95:1262–70.

    Article  Google Scholar 

  20. Takei A, Huang Y, Lopes-Virella MF. Expression of adhesion molecules by human endothelial cells exposed to oxidized low density lipoprotein. Influences of degree of oxidation and location of oxidized LDL. Atherosclerosis. 2001;154:79–86.

    Article  PubMed  CAS  Google Scholar 

  21. Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci USA. 2002;99:15596–601.

    Article  PubMed  CAS  Google Scholar 

  22. Wendt T, Bucciarelli L, Qu W, Lu Y, Yan SF, Stern DM, Schmidt AM. Receptor for advanced glycation endproducts (RAGE) and vascular inflammation: insights into the pathogenesis of macrovascular complications in diabetes. Curr Atheroscler Rep. 2002;4:228–37.

    Article  PubMed  Google Scholar 

  23. Vlassara H, Bucala R, Striker L. Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Investig. 1994;70:138–51.

    PubMed  CAS  Google Scholar 

  24. Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Investig. 1995;96:1395–403.

    Article  PubMed  CAS  Google Scholar 

  25. De Boer OJ, van der Wal AC, Verhagen CE, Becker AE. Cytokine secretion profiles of cloned T cells from human aortic atherosclerotic plaques. J Pathol. 1999;188:174–9.

    Article  PubMed  Google Scholar 

  26. Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T, Lee DC, Kashyap Y, Stern DM, Schmidt AM. RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation. 2002;106:2827–35.

    Article  PubMed  CAS  Google Scholar 

  27. Steinbrecher UP, Fisher M, Witztum JL, Curtiss LK. Immunogenicity of homologous low density lipoprotein after methylation, ethylation, acetylation, or carbamylation: generation of antibodies specific for derivatized lysine. J Lipid Res. 1984;25:1109–16.

    PubMed  CAS  Google Scholar 

  28. Steinbrecher UP. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem. 1987;262:3603–8.

    PubMed  CAS  Google Scholar 

  29. Palinski W, Yla-Herttuala S, Rosenfeld ME, Butler SW, Socher SA, Parthasarathy S, Curtiss LK, Witztum JL. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis. 1990;10:325–35.

    Article  PubMed  CAS  Google Scholar 

  30. Yla-Herttuala S, Palinski W, Butler S, Picard S, Steinberg D, Witztum JL. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb. 1994;14:32–40.

    Article  PubMed  CAS  Google Scholar 

  31. Mironova M, Virella G, Lopes-Virella MF. Isolation and characterization of human antioxidized LDL autoantibodies. Arterioscler Thromb Vasc Biol. 1996;16:222–9.

    Article  PubMed  CAS  Google Scholar 

  32. Virella G, Koskinen S, Krings G, Onorato JM, Thorpe SR, Lopes-Virella M. Immunochemical characterization of purified human oxidized low-density lipoprotein antibodies. Clin Immunol. 2000;95:135–44.

    Article  PubMed  CAS  Google Scholar 

  33. Lopes-Virella MF, McHenry MB, Lipsitz S, Yim E, Wilson PF, Lackland DT, Lyons T, Jenkins AJ, Virella G. Immune complexes containing modified lipoproteins are related to the progression of internal carotid intima-media thickness in patients with type 1 diabetes. Atherosclerosis. 2007;190:359–69.

    Article  PubMed  CAS  Google Scholar 

  34. Lopes-Virella MF, Virella G. Clinical significance of the humoral immune response to modified LDL. Clin Immunol. 2010;134:55–65.

    Article  PubMed  CAS  Google Scholar 

  35. Lopes-Virella MF, Hunt KJ, Baker NL, Lachin J, Nathan DM, Virella G. The levels of oxidized LDL and AGE-LDL in circulating immune complexes are strongly associated with increased levels of carotid intima-media thickness and its progression in type 1 diabetes. Diabetes. 2011;60:582–9.

    Article  PubMed  CAS  Google Scholar 

  36. Saad AF, Virella G, Chassereau C, Boackle RJ, Lopes-Virella MF. OxLDL immune complexes activate complement and induce cytokine production by MonoMac 6 cells and human macrophages. J Lipid Res. 2006;47:1975–83.

    Article  PubMed  CAS  Google Scholar 

  37. Virella G, Atchley DH, Koskinen S, Zheng D, Lopes-Virella M. Pro-atherogenic and pro-inflammatory properties of immune complexes prepared with purified human oxLDL antibodies and human oxLDL. Clin Immunol. 2002;105:81–92.

    Article  PubMed  CAS  Google Scholar 

  38. Virella G, Carter RE, Saad A, Crosswell EG, Game BA, Lopes-Virella MF. Distribution of IgM and IgG antibodies to oxidized LDL in immune complexes isolated from patients with type 1 diabetes and its relationship with nephropathy. Clin Immunol. 2008;127:394–400.

    Article  PubMed  CAS  Google Scholar 

  39. Atchley DH, Lopes-Virella MF, Zheng D, Virella G. Oxidized LDL-anti-oxidized LDL immune complexes and diabetic nephropathy. Diabetologia. 2002;45:1562–71.

    Article  PubMed  CAS  Google Scholar 

  40. Virella G, Thorpe S, Alderson NL, Derrick MB, Chassereau C, Rhett JM, Lopes-Virella MF. Definition of the immunogenic forms of modified human LDL recognized by human autoantibodies and by rabbit hyperimmune antibodies. J Lipid Res. 2004;45:1859–67.

    Article  PubMed  CAS  Google Scholar 

  41. Virella G, Derrick MB, Pate V, Chassereau C, Thorpe SR, Lopes-Virella MF. Development of capture assays for different modifications of human low-density lipoprotein. Clin Diagn Lab Immunol. 2005;12:68–75.

    PubMed  CAS  Google Scholar 

  42. Lopes-Virella MF, Baker NL, Hunt KJ, Lyons TJ, Jenkins AJ, Virella G. High concentrations of AGE-LDL and oxidized LDL in circulating immune complexes are associated with progression of retinopathy in type 1 diabetes. Diabetes Care. 2012;35:1333–40.

    Article  PubMed  CAS  Google Scholar 

  43. Lopes-Virella MF, Carter RE, Baker NL, Lachin J, Virella G. High levels of oxidized LDL in circulating immune complexes are associated with increased odds of developing abnormal albuminuria in Type 1 diabetes. Nephrol Dial Transplant. 2012;27:1416–23.

    Article  PubMed  CAS  Google Scholar 

  44. Lopes-Virella MF, Baker NL, Hunt KJ, Lachin J, Nathan D, Virella G. Oxidized LDL immune complexes and coronary artery calcification in type 1 diabetes. Atherosclerosis. 2011;214:462–7.

    Article  PubMed  CAS  Google Scholar 

  45. Lopes-Virella MF, Baker NL, Hunt KJ, Moritz T, Virella G, VADT Investigators. The levels of MDA-LDL in circulating immune complexes predict myocardial infarction in the VADT study. Atherosclerosis. 2012;224:526–31.

    Article  PubMed  CAS  Google Scholar 

  46. Holvoet P, Perez G, Zhao Z, Brouwers E, Bernar H, Collen D. Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease. J Clin Investig. 1995;95:2611–9.

    Article  PubMed  CAS  Google Scholar 

  47. Holvoet P, Vanhaecke J, Janssens S, Van de Werf F, Collen D. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation. 1998;98:1487–94.

    Article  PubMed  CAS  Google Scholar 

  48. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111:3481–8.

    Article  PubMed  Google Scholar 

  49. Shah PK. Pathophysiology of coronary thrombosis: role of plaque rupture and plaque erosion. Prog Cardiovasc Dis. 2002;44:357–68.

    Article  PubMed  Google Scholar 

  50. Jarrett RJ. Atherosclerosis, diabetes and obesity. Proc Nutr Soc. 1981;40:209–12.

    Article  PubMed  CAS  Google Scholar 

  51. Moreno PR, Murcia AM, Palacios IF, Leon MN, Bernardi VH, Fuster V, Fallon JT. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation. 2000;102:2180–4.

    Article  PubMed  CAS  Google Scholar 

  52. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Investig. 1994;94:2493–503.

    Article  PubMed  CAS  Google Scholar 

  53. Seimon T, Tabas I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res. 2009;50(Suppl):S382–7.

    Article  PubMed  Google Scholar 

  54. Lopes-Virella MF, Griffith RL, Shunk KA, Virella GT. Enhanced uptake and impaired intracellular metabolism of low density lipoprotein complexed with anti-low density lipoprotein antibodies. Arterioscler Thromb. 1991;11:1356–67.

    Article  PubMed  CAS  Google Scholar 

  55. Lopes-Virella MF, Binzafar N, Rackley S, Takei A, La Via M, Virella G. The uptake of LDL-IC by human macrophages: predominant involvement of the Fc gamma RI receptor. Atherosclerosis. 1997;135:161–70.

    Article  PubMed  CAS  Google Scholar 

  56. Oksjoki R, Kovanen PT, Lindstedt KA, Jansson B, Pentikainen MO. OxLDL-IgG immune complexes induce survival of human monocytes. Arterioscler Thromb Vasc Biol. 2006;26:576–83.

    Article  PubMed  CAS  Google Scholar 

  57. de Boer OJ, van der Wal AC, Houtkamp MA, Ossewaarde JM, Teeling P, Becker AE. Unstable atherosclerotic plaques contain T-cells that respond to Chlamydia pneumoniae. Cardiovasc Res. 2000;48:402–8.

    Article  PubMed  Google Scholar 

  58. Lim WS, Timmins JM, Seimon TA, Sadler A, Kolodgie FD, Virmani R, Tabas I. Signal transducer and activator of transcription-1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo. Circulation. 2008;117:940–51.

    Article  PubMed  CAS  Google Scholar 

  59. Hundal RS, Gomez-Munoz A, Kong JY, Salh BS, Marotta A, Duronio V, Steinbrecher UP. Oxidized low density lipoprotein inhibits macrophage apoptosis by blocking ceramide generation, thereby maintaining protein kinase B activation and Bcl-XL levels. J Biol Chem. 2003;278:24399–408.

    Article  PubMed  CAS  Google Scholar 

  60. Tohyama Y, Yamamura H. Protein tyrosine kinase, syk: a key player in phagocytic cells. J Biochem. 2009;145:267–73.

    Article  PubMed  CAS  Google Scholar 

  61. Crowley MT, Costello PS, Fitzer-Attas CJ, Turner M, Meng F, Lowell C, Tybulewicz VL, DeFranco AL. A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J Exp Med. 1997;186:1027–39.

    Article  PubMed  CAS  Google Scholar 

  62. Huang Y, Jaffa A, Koskinen S, Takei A, Lopes-Virella MF. Oxidized LDL-containing immune complexes induce Fc gamma receptor I-mediated mitogen-activated protein kinase activation in THP-1 macrophages. Arterioscler Thromb Vasc Biol. 1999;19:1600–7.

    Article  PubMed  CAS  Google Scholar 

  63. Luo Y, Pollard JW, Casadevall A. Fcgamma receptor cross-linking stimulates cell proliferation of macrophages via the ERK pathway. J Biol Chem. 2010;285:4232–42.

    Article  PubMed  CAS  Google Scholar 

  64. Chen JH, Riazy M, Wang SW, Dai JM, Duronio V, Steinbrecher UP. Sphingosine kinase regulates oxidized low density lipoprotein-mediated calcium oscillations and macrophage survival. J Lipid Res. 2010;51:991–8.

    Article  PubMed  CAS  Google Scholar 

  65. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999;13:2905–27.

    Article  PubMed  CAS  Google Scholar 

  66. Lebman DA, Spiegel S. Cross-talk at the crossroads of sphingosine-1-phosphate, growth factors, and cytokine signaling. J Lipid Res. 2008;49:1388–94.

    Article  PubMed  CAS  Google Scholar 

  67. Al Gadban MM, Smith KJ, Soodavar F, Piansay C, Chassereau C, Twal WO, Klein RL, Virella G, Lopes-Virella MF, Hammad SM. Differential trafficking of oxidized LDL and oxidized LDL immune complexes in macrophages: impact on oxidative stress. PLoS One. 2010;5(9):e12534. doi:10.1371/journal.pone.0012534.

  68. Smith KJ, Twal WO, Soodavar F, Virella G, Lopes-Virella MF, Hammad SM. Heat shock protein 70B′ (HSP70B′) expression and release in response to human oxidized low density lipoprotein immune complexes in macrophages. J Biol Chem. 2010;285:15985–93.

    Article  PubMed  CAS  Google Scholar 

  69. Hammad SM, Twal WO, Barth JL, Smith KJ, Saad AF, Virella G, Argraves WS, Lopes-Virella MF. Oxidized LDL immune complexes and oxidized LDL differentially affect the expression of genes involved with inflammation and survival in human U937 monocytic cells. Atherosclerosis. 2009;202:394–404.

    Article  PubMed  CAS  Google Scholar 

  70. Viita H, Narvanen O, Yla-Herttuala S. Different apolipoprotein B breakdown patterns in models of oxidized low density lipoprotein. Life Sci. 1999;65:783–93.

    Article  PubMed  CAS  Google Scholar 

  71. Hoff HF, Zyromski N, Armstrong D, O’Neil J. Aggregation as well as chemical modification of LDL during oxidation is responsible for poor processing in macrophages. J Lipid Res. 1993;34:1919–29.

    PubMed  CAS  Google Scholar 

  72. Koenig W, Khuseyinova N. Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler Thromb Vasc Biol. 2007;27:15–26.

    Article  PubMed  CAS  Google Scholar 

  73. Colley KJ, Wolfert RL, Cobble ME. Lipoprotein associated phospholipase A(2): role in atherosclerosis and utility as a biomarker for cardiovascular risk. EPMA J. 2011;2:27–38.

    Article  PubMed  Google Scholar 

  74. Loftus IM, Naylor AR, Bell PR, Thompson MM. Plasma MMP-9—a marker of carotid plaque instability. Eur J Vasc Endovasc Surg. 2001;21:17–21.

    Article  PubMed  CAS  Google Scholar 

  75. Pelisek J, Rudelius M, Zepper P, Poppert H, Reeps C, Schuster T, Eckstein HH. Multiple biological predictors for vulnerable carotid lesions. Cerebrovasc Dis. 2009;28:601–10.

    Article  PubMed  Google Scholar 

  76. Hoke M, Schillinger M, Zorn G, Wonnerth A, Amighi J, Mlekusch W, Speidl W, Maurer G, Koppensteiner R, Minar E, Wojta J, Niessner A. The prognostic impact of soluble apoptosis-stimulating fragment on mortality in patients with carotid atherosclerosis. Stroke. 2011;42:2465–70.

    Article  PubMed  Google Scholar 

  77. Blanco-Colio LM, Martin-Ventura JL, Tunon J, Garcia-Camarero T, Berrazueta JR, Egido J. Soluble Fas ligand plasma levels are associated with forearm reactive hyperemia in subjects with coronary artery disease: a novel biomarker of endothelial function? Atherosclerosis. 2008;201:407–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Service of the Ralph H. Johnson Department of the Veterans Affairs Medical Center, by NIH grants DK081352 (NIDDK) and HL55782 (NHLBI) and by the Juvenile Diabetes Research Foundation International. The contents of this manuscript do not represent the views of the Department of Veterans Affairs or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria F. Lopes-Virella.

About this article

Cite this article

Lopes-Virella, M.F., Virella, G. The role of immunity and inflammation in the development of diabetic complications. Diabetol Int 4, 1–8 (2013). https://doi.org/10.1007/s13340-013-0105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-013-0105-3

Keywords

Navigation