Skip to main content

Advertisement

Log in

Perspective: Cooperation of Nanog, NF-κΒ, and CXCR4 in a regulatory network for directed migration of cancer stem cells

  • Review
  • Published:
Tumor Biology

Abstract

Directed cell migration is a crucial mobility phase of cancer stem cells having stemness and tumorigenic characteristics. It is known that CXCR4 plays key roles in the perception of chemotactic gradients throughout the directed migration of CSCs. There are a number of complex signaling pathways and transcription factors that coordinate with CXCR4/CXCL12 axis during directed migration. In this review, we focus on some transcription factors such as Nanog, NF-κB, and Bmi-1 that cooperate with CXCR4/CXCL12 for the maintenance of stemness and induction of metastasis behavior in cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer. 2012;12(11):767–75.

    Article  CAS  PubMed  Google Scholar 

  2. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Flemming A. Cancer stem cells: targeting the root of cancer relapse. Nat Rev Drug Discov. 2015;14(3):165.

    Article  PubMed  Google Scholar 

  4. Soltanian S, Matin MM. Cancer stem cells and cancer therapy. Tumour Biol: J Int Soc Oncodevelopmental Biol Med. 2011;32(3):425–40.

    Article  Google Scholar 

  5. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell. 2008;2(4):333–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Y, Rogoff HA, Keates S, Gao Y, Murikipudi S, Mikule K, et al. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci. 2015;112(6):1839–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275–91.

    Article  CAS  PubMed  Google Scholar 

  8. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5(9):744–9.

    Article  CAS  PubMed  Google Scholar 

  9. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.

    Article  CAS  Google Scholar 

  10. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33.

    Article  PubMed  Google Scholar 

  11. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schulenburg A, Blatt K, Cerny-Reiterer S, Sadovnik I, Herrmann H, Marian B, et al. Cancer stem cells in basic science and in translational oncology: can we translate into clinical application? J Hematol Oncol. 2015;8(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lopez-Lazaro M. The migration ability of stem cells can explain the existence of cancer of unknown primary site. Rethinking metastasis. Oncoscience. 2015;2(5):467–75.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Case LB, Waterman CM. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat Cell Biol. 2015;17(8):955–63.

  15. Liao WT, Ye YP, Deng YJ, Bian XW, Ding YQ. Metastatic cancer stem cells: from the concept to therapeutics. Am J Stem Cells. 2014;3(2):46–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration during metastasis. Curr Opin Cell Biol. 2012;24(2):277–83.

    Article  CAS  PubMed  Google Scholar 

  17. Kitamura T, Qian B-Z, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smith HA, Kang Y. The metastasis-promoting roles of tumor-associated immune cells. J Mol Med (Berlin, Germany). 2013;91(4):411–29.

    Article  CAS  Google Scholar 

  19. Patel P, Chen EI. Cancer stem cells, tumor dormancy, and metastasis. Front Endocrinol. 2012;3:125.

    Article  Google Scholar 

  20. Albini A, Bruno A, Gallo C, Pajardi G, Noonan DM, Dallaglio K. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connect Tissue Res. 2015;56(5):414–25.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Parent CA, Weiner OD. The symphony of cell movement: how cells orchestrate diverse signals and forces to control migration. Curr Opin Cell Biol. 2013;25(5):523–5.

    Article  CAS  PubMed  Google Scholar 

  22. Swaney KF, Huang CH, Devreotes PN. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys. 2010;39:265–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murdoch C. CXCR4: chemokine receptor extraordinaire. Immunol Rev. 2000;177:175–84.

    Article  CAS  PubMed  Google Scholar 

  24. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol. 2004;14(3):171–9.

    Article  CAS  PubMed  Google Scholar 

  26. Zlotnik A. Chemokines and cancer. Int J Cancer J Int Cancer. 2006;119(9):2026–9.

    Article  CAS  Google Scholar 

  27. Haviv YS, van Houdt WJ, Lu B, Curiel DT, Zhu ZB. Transcriptional targeting in renal cancer cell lines via the human CXCR4 promoter. Mol Cancer Ther. 2004;3(6):687–91.

    CAS  PubMed  Google Scholar 

  28. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells (Dayton, Ohio). 2005;23(7):879–94.

    Article  CAS  Google Scholar 

  29. Jung MJ, Rho JK, Kim YM, Jung JE, Jin YB, Ko YG, et al. Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene. 2013;32(2):209–21.

    Article  CAS  PubMed  Google Scholar 

  30. Gao Y, Li C, Nie M, Lu Y, Lin S, Yuan P, et al. CXCR4 as a novel predictive biomarker for metastasis and poor prognosis in colorectal cancer. Tumor Biol. 2014;35(5):4171–5.

    Article  CAS  Google Scholar 

  31. Gagliardi F, Narayanan A, Reni M, Franzin A, Mazza E, Boari N, et al. The role of CXCR4 in highly malignant human gliomas biology: current knowledge and future directions. Glia. 2014;62(7):1015–23.

    Article  PubMed  Google Scholar 

  32. Fareh M, Turchi L, Virolle V, Debruyne D, Almairac F. The miR 302–367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ. 2012;19(2):232–44.

    Article  CAS  PubMed  Google Scholar 

  33. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest. 2010;120(3):694–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim EK, Yun SJ, Ha JM, Kim YW, Jin IH, Woo DH, et al. Synergistic induction of cancer cell migration regulated by G[beta][gamma] and phosphatidylinositol 3-kinase. Exp Mol Med. 2012;44:483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim BJ, Hannanta-anan P, Chau M, Kim YS, Swartz MA, Wu M. Cooperative roles of SDF-1alpha and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model. PLoS ONE. 2013;8(7), e68422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Akekawatchai C, Holland JD, Kochetkova M, Wallace JC, McColl SR. Transactivation of CXCR4 by the insulin-like growth factor-1 receptor (IGF-1R) in human MDA-MB-231 breast cancer epithelial cells. J Biol Chem. 2005;280(48):39701–8.

    Article  CAS  PubMed  Google Scholar 

  37. Mimeault M, Batra SK. Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev. 2010;62(3):497–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu F, Yang LY, Li YF, Ou DP, Chen DP, Fan C. Novel role for epidermal growth factor-like domain 7 in metastasis of human hepatocellular carcinoma. Hepatol (Baltimore, Md). 2009;50(6):1839–50.

    Article  CAS  Google Scholar 

  39. Delfortrie S, Pinte S, Mattot V, Samson C, Villain G, Caetano B, et al. Egfl7 promotes tumor escape from immunity by repressing endothelial cell activation. Cancer Res. 2011;71(23):7176–86.

    Article  CAS  PubMed  Google Scholar 

  40. Bai R, Zhao H, Zhang X, Du S. Characterization of sonic hedgehog inhibition in gastric carcinoma cells. Oncol Lett. 2014;7(5):1381–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. McLennan R, Dyson L, Prather KW, Morrison JA, Baker RE, Maini PK, et al. Multiscale mechanisms of cell migration during development: theory and experiment. Dev (Cambridge, England). 2012;139(16):2935–44.

    Article  CAS  Google Scholar 

  42. Lo KH, Hui MN, Yu RM, Wu RS, Cheng SH. Hypoxia impairs primordial germ cell migration in zebrafish (Danio rerio) embryos. PLoS ONE. 2011;6(9), e24540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schlueter PJ, Sang X, Duan C, Wood AW. Insulin-like growth factor receptor 1b is required for zebrafish primordial germ cell migration and survival. Dev Biol. 2007;305(1):377–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haider H, Jiang S, Idris NM, Ashraf M. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res. 2008;103(11):1300–8.

    Article  CAS  PubMed  Google Scholar 

  45. Huang CE, Yu CC, Hu FW, Chou MY, Tsai LL. Enhanced chemosensitivity by targeting Nanog in head and neck squamous cell carcinomas. Int J Mol Sci. 2014;15(9):14935–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ji W, Jiang Z. Effect of shRNA-mediated inhibition of Nanog gene expression on the behavior of human gastric cancer cells. Oncol Letters. 2013;6(2):367–74.

    Google Scholar 

  47. Borrull A, Ghislin S, Deshayes F, Lauriol J, Alcaide-Loridan C, Middendorp S. Nanog and Oct4 overexpression increases motility and transmigration of melanoma cells. J Cancer Res Clin Oncol. 2012;138(7):1145–54.

    Article  CAS  PubMed  Google Scholar 

  48. Siu MK, Wong ES, Kong DS, Chan HY, Jiang L, Wong OG, et al. Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers. Oncogene. 2013;32(30):3500–9.

    Article  CAS  PubMed  Google Scholar 

  49. Dang H, Ding W, Emerson D, Rountree CB. Snail1 induces epithelial-to-mesenchymal transition and tumor initiating stem cell characteristics. BMC Cancer. 2011;11:396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Palla AR, Piazzolla D, Alcazar N, Canamero M, Grana O, Gomez-Lopez G, et al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Scientific Rep. 2015;5:10205.

    Article  CAS  Google Scholar 

  51. Wang ML, Chiou SH, Wu CW. Targeting cancer stem cells: emerging role of Nanog transcription factor. OncoTargets Ther. 2013;6:1207–20.

    Google Scholar 

  52. Zbinden M, Duquet A, Lorente-Trigos A, Ngwabyt SN, Borges I, Ruiz i Altaba A. NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J. 2010;29(15):2659–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carpenter RL, Lo HW. Hedgehog pathway and GLI1 isoforms in human cancer. Discov Med. 2012;13(69):105–13.

    PubMed  PubMed Central  Google Scholar 

  54. Li X, Ma Q, Xu Q, Liu H, Lei J, Duan W, et al. SDF-1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial-mesenchymal transition in vitro through non-canonical activation of hedgehog pathway. Cancer Lett. 2012;322(2):169–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brandner S. Nanog, Gli, and p53: a new network of stemness in development and cancer. EMBO J. 2010;29(15):2475–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res. 2007;67(5):2187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sanchez-Sanchez AV, Camp E, Leal-Tassias A, Atkinson SP, Armstrong L, Diaz-Llopis M, et al. Nanog regulates primordial germ cell migration through Cxcr4b. Stem Cells (Dayton, Ohio). 2010;28(9):1457–64.

    Article  CAS  Google Scholar 

  58. Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, et al. Nanog safeguards pluripotency and mediates germline development. Nature. 2007;450(7173):1230–4.

    Article  CAS  PubMed  Google Scholar 

  59. Blaser H, Eisenbeiss S, Neumann M, Reichman-Fried M, Thisse B, Thisse C, et al. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J Cell Sci. 2005;118(Pt 17):4027–38.

    Article  CAS  PubMed  Google Scholar 

  60. Lee CC, Lai JH, Hueng DY, Ma HI, Chung Y, Sun YY, et al. Disrupting the CXCL12/CXCR4 axis disturbs the characteristics of glioblastoma stem-like cells of rat RG2 glioblastoma. Cancer Cell Int. 2013;13(1):85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singh AP, Arora S, Bhardwaj A, Srivastava SK, Kadakia MP, Wang B, et al. CXCL12/CXCR4 protein signaling axis induces sonic hedgehog expression in pancreatic cancer cells via extracellular regulated kinase- and Akt kinase-mediated activation of nuclear factor kappaB: implications for bidirectional tumor-stromal interactions. J Biol Chem. 2012;287(46):39115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X, et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 2010;70(24):10464–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Helbig G, Christopherson 2nd KW, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem. 2003;278(24):21631–8.

    Article  CAS  PubMed  Google Scholar 

  64. Zhi Y, Lu H, Duan Y, Sun W, Guan G, Dong Q, et al. Involvement of the nuclear factor-kappaB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-alpha. Int J Mol Med. 2015;35(2):349–57.

    CAS  PubMed  Google Scholar 

  65. Zhi Y, Duan Y, Zhou X, Yin X, Guan G, Zhang H, et al. NF-kappaB signaling pathway confers neuroblastoma cells migration and invasion ability via the regulation of CXCR4. Med Sci Monit : Int Med J Exp Clin Res. 2014;20:2746–52.

    Article  Google Scholar 

  66. Po A, Ferretti E, Miele E, De Smaele E, Paganelli A, Canettieri G, et al. Hedgehog controls neural stem cells through p53-independent regulation of Nanog. EMBO J. 2010;29(15):2646–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cochrane CR, Szczepny A, Watkins DN, Cain JE. Hedgehog signaling in the maintenance of cancer stem cells. Cancers. 2015;7(3):1554–85.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xia P, Xu XY. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5(5):1602–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Martelli AM, Evangelisti C, Follo MY, Ramazzotti G, Fini M, Giardino R, et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells. Curr Med Chem. 2011;18(18):2715–26.

    Article  CAS  PubMed  Google Scholar 

  70. Weng W, Zhang X, Xu K, Zheng T, Goel A. Long non-coding RNA Hotair, enhances Sdf1a-CXCR4-induced migration and invasion in esophageal squamous cell carcinoma. Gastroenterology. 2015;148(4):S-560-S-1.

    Article  Google Scholar 

  71. Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ, et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest. 2009;119(12):3626–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paranjape AN, Balaji SA, Mandal T, Krushik EV, Nagaraj P, Mukherjee G, et al. Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog. BMC Cancer. 2014;14:785.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liang J, Wang P, Xie S, Wang W, Zhou X, Hu J, et al. Bmi-1 regulates the migration and invasion of glioma cells through p16. Cell Biol Int. 2015;39(3):283–90.

  75. Jiang L, Wu J, Yang Y, Liu L, Song L, Li J, et al. Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway. BMC Cancer. 2012;12:406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li D, Feng J, Wu T, Wang Y, Sun Y, Ren J, et al. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am J Pathol. 2013;182(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  77. Zhou X, Chen J, Tang W. The molecular mechanism of HOTAIR in tumorigenesis, metastasis, and drug resistance. Acta Biochim Biophys Sin. 2014;46(12):1011–5.

    Article  PubMed  Google Scholar 

  78. Zhu M, Guo J, Xia H, Li W, Lu Y, Dong X, et al. Alpha-fetoprotein activates AKT/mTOR signaling to promote CXCR4 expression and migration of hepatoma cells. Oncoscience. 2015;2(1):59–70.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yi T, Zhai B, Yu Y, Kiyotsugu Y, Raschle T, Etzkorn M, et al. Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci. 2014;111(21):E2182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aziz MH, Hafeez BB, Sand JM, Pierce DB, Aziz SW, Dreckschmidt NE, et al. Protein kinase Cvarepsilon mediates Stat3Ser727 phosphorylation, Stat3-regulated gene expression, and cell invasion in various human cancer cell lines through integration with MAPK cascade (RAF-1, MEK1/2, and ERK1/2). Oncogene. 2010;29(21):3100–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cho KH, Jeong KJ, Shin SC, Kang J, Park CG, Lee HY. STAT3 mediates TGF-beta1-induced TWIST1 expression and prostate cancer invasion. Cancer Lett. 2013;336(1):167–73.

    Article  CAS  PubMed  Google Scholar 

  82. Jain K, Basu A. Protein kinase C-epsilon promotes EMT in breast cancer. Breast Cancer: Basic Clin Res. 2014;8:61–7.

    CAS  Google Scholar 

  83. Martin GS. Cell signaling and cancer. Cancer Cell. 2003;4(3):167–74.

    Article  CAS  PubMed  Google Scholar 

  84. Ivaska J, Kermorgant S, Whelan R, Parsons M, Ng T, Parker PJ. Integrin-protein kinase C relationships. Biochem Soc Trans. 2003;31(Pt 1):90–3.

    Article  CAS  PubMed  Google Scholar 

  85. Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer. 2014;14(9):598–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. He H, Zhao ZH, Han FS, Wang XF, Zeng YJ. Activation of protein kinase C epsilon enhanced movement ability and paracrine function of rat bone marrow mesenchymal stem cells partly at least independent of SDF-1/CXCR4 axis and PI3K/AKT pathway. Int J Clin Exp Med. 2015;8(1):188–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Xie X, Piao L, Cavey GS, Old M, Teknos TN, Mapp AK, et al. Phosphorylation of Nanog is essential to regulate Bmi1 and promote tumorigenesis. Oncogene. 2014;33(16):2040–52.

    Article  CAS  PubMed  Google Scholar 

  88. Ho B, Olson G, Figel S, Gelman I, Cance WG, Golubovskaya VM. Nanog increases focal adhesion kinase (FAK) promoter activity and expression and directly binds to FAK protein to be phosphorylated. J Biol Chem. 2012;287(22):18656–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Golubovskaya VM. FAK and Nanog cross talk with p53 in cancer stem cells. Anti Cancer Agents Med Chem. 2013;13(4):576–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research work in the laboratory of H.D. is supported by grant number 3/25064 from Ferdowsi University of Mashhad, Mashhad, Iran, and grant number 100311 from Council for Stem Cell Sciences and Technologies of Iran and the Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesam Dehghani.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Es-haghi, M., Soltanian, S. & Dehghani, H. Perspective: Cooperation of Nanog, NF-κΒ, and CXCR4 in a regulatory network for directed migration of cancer stem cells. Tumor Biol. 37, 1559–1565 (2016). https://doi.org/10.1007/s13277-015-4690-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4690-6

Keywords

Navigation