Skip to main content
Log in

Characterization and evolutionary analysis of Brassica species-diverged sequences containing simple repeat units

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Brassica species, B. napus (canola), B. rapa and B. oleracea, are important sources of nutritionally valuable vegetable oil and protein-rich meal for animals and humans. Sequencing of the model plant Arabidopsis thaliana, has opened the way for investigations into the complex structure of the Brassica genomes, offering important insight into their evolution and composition. We use this sequence information for the characterization and functional analysis of SSR sequences that have diverged between the Brassica species. A total of 56 species-diverged sequences containing simple repeat units (SDS-SSR) of B. napus and its diploid progenitor species B. rapa and B. oleracea were isolated and characterized. Of these, 40 sequences showed homology with other Brassica sequences. Using the SSR Locator software, only 23 sequences were found to have SSRs, possibly due to the loss of SSR units in the process of species divergence. Sequence alignments with A. thaliana revealed that these species-diverged SSR sequences were responsible for Brassica divergence for differences between Brassica species in several genomic regions. Six active genes related to transferase, protein, transcription factor and retroelements were found in the SDS-SSRs. These results will further improve our understanding of the characteristics of species-diverged SSR fragments and their contribution to genome differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alix K, Joets J, Ryder CD, Moore J, Barker GC, Bailey JP, King GJ, Pat Heslop-Harrison JS (2008) The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. Plant J 56:1030–1044

    Article  PubMed  CAS  Google Scholar 

  • Anamthawat-Jonsson K, Heslop-Harrison JS (1993) Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol Gen Genet 240:151–158

    Article  PubMed  CAS  Google Scholar 

  • Aveskamp MM, Woudenberg JH, de Gruyter J, Turco E, Groenewald JZ, Crous PW (2009) Development of taxon-specific sequence characterized amplified region (SCAR) markers based on actin sequences and DNA amplification fingerprinting (DAF): a case study in the Phoma exigua species complex. Mol Plant Pathol 10:403–414

    Article  PubMed  CAS  Google Scholar 

  • Blake NK, Sherman JD, Dvorak J, Talbert LE (2004) Genome-specific primer sets for starch biosynthesis genes in wheat. Theor Appl Genet 109:1295–1302

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ (2002) Divergence between samples of chimpanzee and human DNA sequences is 5%, counting indels. Proc Natl Acad Sci USA 99:13633–13635

    Article  PubMed  CAS  Google Scholar 

  • Chung MC, Cheng YY, Fang SA, Lin YC (2007) A repetitive sequence specific to Oryza species with BB genome and abundant in Oryza punctata Kotschy ex Steud. Bot Stud 48:263–272

    Google Scholar 

  • Conesa A, Gotz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832

    Article  PubMed  Google Scholar 

  • da Maia LC, Palmieri DA, de Souza VQ, Kopp MM, de Carvalho FI, Costa de Oliveira A (2008) SSR Locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genomics 2008:412696

    Article  PubMed  Google Scholar 

  • Dam P, Olman V, Harris K, Su Z, Xu Y (2007) Operon prediction using both genome-specific and general genomic information. Nucleic Acids Res 35:288–298

    Article  PubMed  CAS  Google Scholar 

  • Eggert LS, Beadell JS, McClung A, McIntosh CE, Fleischer RC (2009) Evolution of microsatellite loci in the adaptive radiation of Hawaiian honeycreepers. J Hered 100:137–147

    Article  PubMed  CAS  Google Scholar 

  • Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269

    Article  PubMed  CAS  Google Scholar 

  • Flavell RB, O’Dell M, Hutchinson J (1981) Nucleotide sequence organization in plant chromosomes and evidence for sequence translocation during evolution. Cold Spring Harb Symp Quant Biol 45(Pt 2):501–508

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Schmidt T, Jung C (2000) Molecular characterization and chromosomal distribution of species-specific repetitive DNA sequences from Beta corolliflora, a wild relative of sugar beet. Genome 43:1073–1080

    PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harrison E, Muir A, Stratford M, Wheals A (2011) Species-specific PCR primers for the rapid identification of yeasts of the genus Zygosaccharomyces. FEMS Yeast Res 11:356–365

    Article  PubMed  CAS  Google Scholar 

  • Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391

    Article  PubMed  CAS  Google Scholar 

  • Hilson P, Allemeersch J, Altmann T, Aubourg S, Avon A, Beynon J, Bhalerao RP, Bitton F, Caboche M, Cannoot B et al (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res 14:2176–2189

    Article  PubMed  CAS  Google Scholar 

  • Hothorn M, Belkhadir Y, Dreux M, Dabi T, Noel JP, Wilson IA, Chory J (2011) Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 474:467–471

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Brule-Babel A (2010) Development of genome-specific primers for homoeologous genes in allopolyploid species: the waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivum L.) as examples. BMC Res Notes 3:140

    Article  PubMed  Google Scholar 

  • Huntley M, Golding GB (2000) Evolution of simple sequence in proteins. J Mol Evol 51:131–140

    PubMed  CAS  Google Scholar 

  • Junghans H, Metzlaff M (1988) Genome specific, highly repeated sequences of Hordeum vulgate: cloning, sequencing and squash dot test. Theor Appl Genet 76:728–732

    Article  CAS  Google Scholar 

  • Kang HW, Kang KK (2008) Genomic characterization of Oryza species-specific CACTA-like transposon element and its application for genomic fingerprinting of rice varieties. Mol Breed 21:283–292

    Article  CAS  Google Scholar 

  • Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22:253–259

    Article  PubMed  CAS  Google Scholar 

  • Kong F, Ge C, Fang X, Snowdon RJ, Wang Y (2010) Characterization of seedling proteomes and development of markers to distinguish the Brassica A and C genomes. J Genet Genomics 37:333–340

    Article  PubMed  CAS  Google Scholar 

  • La Mura M, Norris C, Sporle S, Jayaweera D, Greenland A, Lee D (2010) Development of genome-specific 5S rDNA markers in Brassica and related species for hybrid testing. Genome 53:643–649

    Article  PubMed  Google Scholar 

  • Li R, Li Y, Zheng H, Luo R, Zhu H, Li Q, Qian W, Ren Y, Tian G, Li J et al (2010) Building the sequence map of the human pan-genome. Nat Biotechnol 28:57–63

    Article  PubMed  CAS  Google Scholar 

  • Li W, Wolynes PG, Takada S (2011) Frustration, specific sequence dependence, and nonlinearity in large-amplitude fluctuations of allosteric proteins. Proc Natl Acad Sci USA 108:3504–3509

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Lim GA, Jewell EG, Li X, Erwin TA, Love C, Batley J, Spangenberg G, Edwards D (2007) A comparative map viewer integrating genetic maps for Brassica and Arabidopsis. BMC Plant Biol 7:40

    Article  PubMed  Google Scholar 

  • Lisch D, Chomet P, Freeling M (1995) Genetic characterization of the Mutator system in maize: behavior and regulation of Mu transposons in a minimal line. Genetics 139:1777–1796

    PubMed  CAS  Google Scholar 

  • Ma X, Wang K, Guo W, Zhang T (2007) Multiple SSR-PCR techniques and their application in cotton. Mol Plant Breeding 5:648–654

    CAS  Google Scholar 

  • Marchal K, Thijs G, De Keersmaecker S, Monsieurs P, De Moor B, Vanderleyden J (2003) Genome-specific higher-order background models to improve motif detection. Trends Microbiol 11:61–66

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal VK, Good AG, Parkin IA (2005) Complexities of chromosome landing in a highly duplicated genome: toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics 171:1977–1988

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution. Grasses, line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Nakayama S (2004) Species-specific accumulation of interspersed sequences in genus Saccharum. Genes Genet Syst 79:361–365

    Article  PubMed  CAS  Google Scholar 

  • Nevo E, Beharav A, Meyer RC, Hackett CA, Forster BP, Russell JR, Powell W (2005) Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in ‘Evolution Canyon’, Israel. Biol J Linn Soc 84:205–224

    Article  Google Scholar 

  • Pankin AA, Khavkin EE (2011) Genome-specific SCAR markers help solve taxonomy issues: a case study with Sinapis arvensis (Brassiceae, Brassicaceae). Am J Bot 98:e54–e57

    Article  PubMed  Google Scholar 

  • Pevzner P, Tesler G (2003) Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci USA 100:7672–7677

    Article  PubMed  CAS  Google Scholar 

  • Remm M, Koressaar T, Joers K (2009) Automatic identification of species-specific repetitive DNA sequences and their utilization for detecting microbial organisms. Bioinformatics 25:1349–1355

    Article  PubMed  Google Scholar 

  • Röbbelen G (1960) Contributions to the analysis of the Brassica-genome. Chromosoma 11:205–228

    Article  Google Scholar 

  • Rodriguez-Suarez C, Ramirez MC, Martin A, Atienza SG (2011) Applicability of chromosome-specific SSR wheat markers for the introgression of Triticum urartu in durum wheat breeding programmes. Plant Genetic Resour Charact 9:439–444

    Article  CAS  Google Scholar 

  • Schelfhout CJ, Snowdon R, Cowling WA, Wroth JM (2004) A PCR based B-genome-specific marker in Brassica species. Theor Appl Genet 109:917–921

    Article  PubMed  CAS  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  PubMed  CAS  Google Scholar 

  • Sia EA, Butler CA, Dominska M, Greenwell P, Fox TD, Petes TD (2000) Analysis of microsatellite mutations in the mitochondrial DNA of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:250–255

    Article  PubMed  CAS  Google Scholar 

  • Smith SD, Rausher MD (2011) Gene loss and parallel evolution contribute to species difference in flower color. Mol Biol Evol 28:2799–2810

    Article  PubMed  CAS  Google Scholar 

  • Springer NM, Ying K, Fu Y, Ji T, Yeh CT, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5:e1000734

    Article  PubMed  Google Scholar 

  • Tang Z, Fu S, Ren Z, Zou Y (2009) Rapid evolution of simple sequence repeat induced by allopolyploidization. J Mol Evol 69:217–228

    Article  PubMed  CAS  Google Scholar 

  • UN (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Xin Y, Zhang Z, Xiong Y, Yuan L (2005) Identification and purity test of super hybrid rice with SSR molecular markers. Rice Sci 12:7–12

    Google Scholar 

  • Zhao YG, Atta O, Lu CM (2009) Genetic diversity of European and Chinese oilseed Brassica rapa cultivars from different breeding periods. Agric Sci China 8:931–938

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National High Technology Research and Development Program of China (863 Program) (2011AA10A104) and Ministry of Agriculture, Modern Agricultural Industrial Technology System Program (CARS-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghui Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, L., Xiao, M., Mason, A.S. et al. Characterization and evolutionary analysis of Brassica species-diverged sequences containing simple repeat units. Genes Genom 35, 167–175 (2013). https://doi.org/10.1007/s13258-013-0076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-013-0076-6

Keywords

Navigation