Skip to main content
Log in

Estimating Velocity for Processive Motor Proteins with Random Detachment

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

We show that, for a wide range of models, the empirical velocity of processive motor proteins has a limiting Pearson type VII distribution with finite mean but infinite variance. We develop maximum likelihood inference for this Pearson type VII distribution. In two simulation studies, we compare the performance of our MLE with the performance of standard Student’s t-based inference. The studies show that incorrectly assuming normality (1) can lead to imprecise inference regarding motor velocity in the one-sample case, and (2) can significantly reduce power in the two-sample case. These results should be of interest to experimentalists who wish to engineer motors possessing specific functional characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atzberger, P., and Peskin, C. (2006), “A Brownian Dynamics Model of Kinesin in Three Dimensions Incorporating the Force-Extension Profile of the Coiled-Coil Cargo Tether,” Bulletin of Mathematical Biology, 68, 131–160.

    Article  MathSciNet  Google Scholar 

  • Coles, S. (2001), An Introduction to Statistical Modeling of Extreme Values, London: Springer.

    MATH  Google Scholar 

  • Devroye, L. (1986), Non-Uniform Random Variate Generation, New York: Springer.

    MATH  Google Scholar 

  • Elston, T., and Peskin, C. (2000), “The Role of Protein Flexibility in Molecular Motor Function: Coupled Diffusion in a Tilted Periodic Potential,” SIAM Journal on Applied Mathematics, 60, 842–867.

    Article  MathSciNet  MATH  Google Scholar 

  • Gabrielsen, G. (1982), “On the Unimodality of the Likelihood for the Cauchy Distribution: Some Comments,” Biometrika, 69, 677–678.

    Article  MathSciNet  MATH  Google Scholar 

  • Goshima, G., and Vale, R. D. (2005), “Cell Cycle-Dependent Dynamics and Regulation of Mitotic Kinesins in Drosophila S2 Cells,” Molecular Biology of the Cell, 16, 3896–3907.

    Article  Google Scholar 

  • Hirokawa, N., and Takemura, R. (2003), “Biochemical and Molecular Characterization of Diseases Linked to Motor Proteins,” Trends in Biochemical Sciences, 28, 558–565.

    Article  Google Scholar 

  • Hirokawa, N., Pfister, K. K., Yorifuji, H., Wagner, M. C., Brady, S. T., and Bloom, G. S. (1989), “Submolecular Domains of Bovine Brain Kinesin Identified by Electron Microscopy and Monoclonal Antibody Decoration,” Cell, 56, 867–878.

    Article  Google Scholar 

  • Hughes, J., Hancock, W. O., and Fricks, J. (2011), “A Matrix Computational Approach to Kinesin Neck Linker Extension,” Journal of Theoretical Biology, 269, 181–194.

    Article  MathSciNet  Google Scholar 

  • — (2012), “Kinesins with Extended Neck Linkers: A Chemomechanical Model for Variable-Length Stepping,” Bulletin of Mathematical Biology, 74, 1066–1097.

    Article  MathSciNet  MATH  Google Scholar 

  • Ihaka, R., and Gentleman, R. (1996), “R: A Language for Data Analysis and Graphics,” Journal of Computational and Graphical Statistics, 5, 299–314.

    Google Scholar 

  • Kolomeisky, A., and Fisher, M. (2007), “Molecular Motors: A Theorist’s Perspective,” Annual Review of Physical Chemistry, 58, 675–695.

    Article  Google Scholar 

  • Kural, C., Balci, H., and Selvin, P. R. (2005), “Molecular Motors One at a Time: Fiona to the Rescue,” Journal of Physics. Condensed Matter, 17, S3979–S3995.

    Article  Google Scholar 

  • Kutys, M., Fricks, J., and Hancock, W. (2010), “Monte Carlo Analysis of Neck Linker Extension in Kinesin Molecular Motors,” PLoS Computational Biology, 6, e1000980.

    Article  MathSciNet  Google Scholar 

  • Lilliefors, H. (1967), “On the Kolmogorov–Smirnov Test for Normality with Mean and Variance Unknown,” Journal of the American Statistical Association, 62, 399–402.

    Article  Google Scholar 

  • Miki, H., Setou, M., Kaneshiro, K., and Hirokawa, N. (2001), “All Kinesin Superfamily Protein, KIF, Genes in Mouse and Human,” Proceedings of the National Academy of Sciences of the United States of America, 98, 7004–7011.

    Article  Google Scholar 

  • Mogilner, A., Wang, H., Elston, T., and Oster, G. (2002), “Molecular Motors: Theory and Experiment,” in Computational Cell Biology, eds. C. Fall, E. Marland, J. Wagner and J. Tyson, New York: Springer.

    Google Scholar 

  • Muthukrishnan, G., Zhang, Y., Shastry, S., and Hancock, W. (2009), “The Processivity of Kinesin-2 Motors Suggests Diminished Front-Head Gating,” Current Biology, 19, 442–447.

    Article  Google Scholar 

  • Pearson, K. (1895), “Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material,” Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 186, 343–414.

    Article  Google Scholar 

  • — (1901), “Mathematical Contributions to the Theory of Evolution. X. Supplement to a Memoir on Skew Variation,” Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 197, 443.

    Article  MATH  Google Scholar 

  • — (1916), “Mathematical Contributions to the Theory of Evolution. XIX. Second Supplement to a Memoir on Skew Variation,” Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 216, 429–457.

    Article  MATH  Google Scholar 

  • Serfling, R., and Mazumder, S. (2009), “Exponential Probability Inequality and Convergence Results for the Median Absolute Deviation and Its Modifications,” Statistics & Probability Letters, 79, 1767–1773.

    Article  MathSciNet  MATH  Google Scholar 

  • Shao, J. (2003), Mathematical Statistics, Berlin: Springer.

    Book  MATH  Google Scholar 

  • Shastry, S., and Hancock, W. O. (2010), “Neck Linker Length Determines the Degree of Processivity in Kinesin-1 and Kinesin-2 Motors,” Current Biology, 20, 939–943.

    Article  Google Scholar 

  • — (2011), “Interhead Tension Determines Processivity Across Diverse n-Terminal Kinesins,” Proceedings of the National Academy of Sciences of the United States of America, 108, 16253–16258.

    Article  Google Scholar 

  • Spudich, J. A., Rice, S. E., Rock, R. S., Purcell, T. J., and Warrick, H. M. (2011), “Optical Traps to Study Properties of Molecular Motors,” in Cold Spring Harbor Protocols, p. 2011.

    Google Scholar 

  • Whitt, W. (2002), Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues, Berlin: Springer.

    MATH  Google Scholar 

  • Yang, J. T., Laymon, R. A., and Goldstein, L. S. (1989), “A Three-Domain Structure of Kinesin Heavy Chain Revealed by DNA Sequence and Microtubule Binding Analyses,” Cell, 56, 879–889.

    Article  Google Scholar 

  • Yildiz, A., Tomishige, M., Gennerich, A., and Vale, R. (2008), “Intramolecular Strain Coordinates Kinesin Stepping Behavior Along Microtubules,” Cell, 134, 1030–1041.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, J., Shastry, S., Hancock, W.O. et al. Estimating Velocity for Processive Motor Proteins with Random Detachment. JABES 18, 204–217 (2013). https://doi.org/10.1007/s13253-013-0131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-013-0131-4

Key Words

Navigation