Skip to main content
Log in

Monte Carlo simulation of the RBE of I-131 radiation using DNA damage as biomarker

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In general, a weighting factor of one is applied for low linear energy transfer radiations. However, several studies indicate that relative biological effectiveness (RBE) of low energy photons and electrons is greater than one. The aim of this current study was calculating the RBE of I-131 radiation relative to Co-60 gamma photons in 100 μm spheroid cells using Monte Carlo (MC) simulations. These calculations were compared to experimentally measured results. MCNPX2.6 was used to simulate the I-131 and Co-60 irradiation setups and calculate the secondary electron spectra at energies higher than 1 keV with varying oxygen concentrations. The electron spectra at energies lower than 1 keV were obtained by extrapolation (down to 10 eV). The calculated electron spectra were input into the MCDS micro-dosimetric Monte Carlo code to calculate the DSB induction and related RBE. The calculated RBE of I-131 radiation relative to Co-60 photons, as the reference radiation recommended by the International Commission on Radiation Protection (ICRP), was 1.06, 1.03 and 1.02 for oxygen concentrations of 0, 5 and 100%, respectively. Results of MC simulations indicate the RBE of I-131 is greater than one. This finding, despite a 10% discrepancy with the findings of the previous in vitro study of one of the authors of this paper, reemphasizes that I-131 radiation induces more severe biological damage than current ICRP recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hall EJ, Giaccia AJ. (2006) Radiobiology for the radiologist: Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  2. Nikjoo H, Lindborg L (2010) RBE of low energy electrons and photons. Phys Med Biol 55(10):R65

    Article  CAS  PubMed  Google Scholar 

  3. No author (2007) The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 37(2–4):1–332

  4. Bellamy M, Puskin J, Hertel N, Eckerman K. (2015) An empirical method for deriving RBE values associated with electrons, photons and radionuclides. Radiat Prot Dosim. doi: 10.1093/rpd/ncu358

    Google Scholar 

  5. Becker DV, Sawin CT (1996) Radioiodine and thyroid disease: the beginning. Semin Nucl Med 26(3):155–164

    Article  CAS  PubMed  Google Scholar 

  6. Yeong C-H, Cheng M-h, Ng K-H (2014) Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B 15(10):845–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldsby RE, Fitzgerald PA (2008) Meta [131 I] iodobenzylguanidine therapy for patients with metastatic and unresectable pheochromocytoma and paraganglioma. Nucl Med Biol 35:S49–S62

    Article  CAS  Google Scholar 

  8. Gaze MN, Gains JE, Walker C, Bomanji JB (2013) Optimization of molecular radiotherapy with [131I]-meta Iodobenzylguanidine for high-risk neuroblastoma. Quart J Nuclear Med Mol Imaging 57(1):66–78

    CAS  Google Scholar 

  9. Garaventa A, Bellagamba O, Lo Piccolo MS, Milanaccio C, Lanino E, Bertolazzi L et al (1999) 131I-metaiodobenzylguanidine (131I-MIBG) therapy for residual neuroblastoma: a mono-institutional experience with 43 patients. Br J Cancer 81(8):1378–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamashita S, Suzuki S (2013) Risk of thyroid cancer after the Fukushima nuclear power plant accident. Respir Investig 51(3):128–133

    Article  PubMed  Google Scholar 

  11. Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V et al (2005) Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst 97(10):724–732

    Article  PubMed  Google Scholar 

  12. Zaider M, Rossi BHH, Zaider M (1996) Microdosimetry and its applications: Springer, Berlin/Heidelberg

    Google Scholar 

  13. Pan CY, Huang YW, Cheng KH, Chao TC, Tung CJ. (2014) Microdosimetry spectra and relative biological effectiveness of 15 and 30 MeV proton beams. Appl Radiat Isot 97:101–105

    Article  PubMed  Google Scholar 

  14. Reniers B, Liu D, Rusch T, Verhaegen F (2008) Calculation of relative biological effectiveness of a low-energy electronic brachytherapy source. Phys Med Biol 53(24):7125–7135

    Article  PubMed  Google Scholar 

  15. Nikjoo H (2003) Radiation track and DNA damage. Iran J Radiat Res 1(1):3–16

    Google Scholar 

  16. Nikjoo H, Emfietzoglou D, Watanabe R, Uehara S (2008) Can Monte Carlo track structure codes reveal reaction mechanism in DNA damage and improve radiation therapy? Radiat Phys Chem 77(10):1270–1279

    Article  CAS  Google Scholar 

  17. Nikjoo H, O’Neill P, Wilson W, Goodhead D (2009) Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat Res 156(5):577–583

    Article  Google Scholar 

  18. Neshasteh-Riz A, Mahmoud Pashazadeh A, Mahdavi SR (2013) Relative biological effectiveness (RBE) of (131)I radiation relative to (60)Co gamma rays. Cell J 15(3):224–229

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Waters LS (2002) MCNPX user’s manual. Los Alamos. http://www.mcnpxlanlgov/opendocs/versions/v230/MCNPX_230_Manualpdf. Accessed in Apr 15 2012

  20. Pelowitz DB (2005) MCNPXTM user’s manual. Los Alamos National Laboratory, Los Alamos

  21. Hamm RN, Wright HA, Katz R, Turner JE, Ritchie RH (1978) Calculated yields and slowing-down spectra for electrons in liquid water: implications for electron and photon RBE. Phys Med Biol 23(6):1149–1161

    Article  CAS  PubMed  Google Scholar 

  22. Tilly N, Fernandez-Varea JM, Grusell E, Brahme A (2002) Comparison of Monte Carlo calculated electron slowing-down spectra generated by 60Co gamma-rays, electrons, protons and light ions. Phys Med Biol 47(8):1303–1319

    Article  CAS  PubMed  Google Scholar 

  23. Vassiliev ON (2012) Electron slowing-down spectra in water for electron and photon sources calculated with the Geant4-DNA code. Phys Med Biol 57(4):1087–1094

    Article  PubMed  Google Scholar 

  24. Paretzke HG, Turner JE, Hamm RN, Ritchie RH, Wright HA (1991) Spatial distributions of inelastic events produced by electrons in gaseous and liquid water. Radiat Res 127(2):121–129

    Article  CAS  PubMed  Google Scholar 

  25. Semenenko VA, Stewart RD (2006) Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys Med Biol 51(7):1693–1706

    Article  CAS  PubMed  Google Scholar 

  26. Stewart RD, Yu VK, Georgakilas AG, Koumenis C, Park JH, Carlson DJ (2011) Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res 176(5):587–602

    Article  CAS  PubMed  Google Scholar 

  27. Semenenko V, Stewart R (2006) Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys Med Biol 51(7):1693

    Article  CAS  PubMed  Google Scholar 

  28. Hsiao Y, Stewart RD (2007) Monte Carlo simulation of DNA damage induction by X-rays and selected radioisotopes. Phys Med Biol 53(1):233

    Article  PubMed  Google Scholar 

  29. Semenenko V, Stewart RD (2004) A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation. Radiat Res 161(4):451–457

    Article  CAS  PubMed  Google Scholar 

  30. Brunckhorst E, Gershkevitsh E, Ibbott G (2008) Commissioning of radiotherapy treatment planning systems. Testing for typical external beam treatment techniques. IAEA 1583:1–67

    Google Scholar 

  31. Dietze G, Alberts WG (2004) Why it is advisable to keep wR = 1 and Q = 1 for photons and electrons. Radiat Prot Dosim 109(4):297–302

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mahmoud-Pashazadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval is not required because of the type of the study that was a simulation not practical study on human or animal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzati, A.O., Mahmoud-Pashazadeh, A. & Studenski, M.T. Monte Carlo simulation of the RBE of I-131 radiation using DNA damage as biomarker. Australas Phys Eng Sci Med 40, 395–400 (2017). https://doi.org/10.1007/s13246-017-0544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-017-0544-4

Keywords

Navigation