Skip to main content
Log in

Modeling of Induced Electric Fields as a Function of Cardiac Anatomy and Venous Pacing Lead Location

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The combined effects of cardiac anatomy and pacing lead electrode location within left ventricular cardiac veins on resultant pacing thresholds are not well understood. The specific aims of this study were to: (1) develop a comparative electrostatic model based on previously obtained histological measurements, and (2) compare resulting electric fields and voltage gradients with in vitro experimental results. In vitro pacing thresholds measured from swine hearts were utilized to model electric fields generated from different cardiac venous pacing locations within veins of varying diameter and fat thickness. The simulated activation fields were defined as 100 V/m and all materials were defined as isotropic. The obtained results predicted larger activation fields when an electrode was oriented away from the myocardium or in free-floating positions, hence requiring more myocardial tissue to have 100 V/m than when it was oriented toward the myocardium. Thus, the resultant modeled electric fields followed the same qualitative trends as in vitro experiments performed in the swine hearts. In general, while electrode position primarily affected pacing thresholds, both vein diameter and relative epicardial fat thickness also influenced pacing thresholds. The electric fields were larger for basal regions modeled using larger vein diameters and epicardial fat thicknesses. These electrostatic field simulations provide unique insights as to how varied cardiac anatomies and relative electrode locations affect thresholds by enabling visualization of the electric fields propagating through cardiac tissues during pacing from the venous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Anderson, S. E., A. J. Hill, and P. A. Iaizzo. Micro-anatomy of human left ventricular coronary veins. Anat. Rec. 292:23–28, 2008.

    Article  Google Scholar 

  2. Anderson, S. E., and P. A. Iaizzo. Effects of left ventricular lead positions and coronary venous microanatomy on cardiac pacing parameters. J. Electrocardiol. 43:136–141, 2010.

    Article  Google Scholar 

  3. Ansalone, G., P. Giannantoni, R. Ricci, P. Trambaiolo, F. Fedele, and M. Santini. Doppler myocardial imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing. J. Am. Coll. Cardiol. 39:489–499, 2002.

    Article  Google Scholar 

  4. Bakker, P. F., H. W. Meijburg, J. W. de Vries, M. M. Mower, A. C. Thomas, M. L. Hull, E. O. Robles De Medina, and J. J. Bredee. Biventricular pacing in end-stage heart failure improves functional capacity and left ventricular function. J. Interv. Card. Electrophysiol. 4:395–404, 2000.

    Article  Google Scholar 

  5. Becker, M., R. Hoffmann, F. Schmitz, A. Hundemer, H. Kuhl, P. Schauerte, K. Kelm, and A. Franke. Relation of optimal lead positioning as defined by three-dimensional echocardiography to long-term benefit of cardiac resynchronization. Am. J. Cardiol. 100:1671–1676, 2007.

    Article  Google Scholar 

  6. Becker, M., R. Kramann, A. Franke, O. A. Breithardt, N. Heussen, C. Knackstedt, C. Stellbrink, P. Schauerte, M. Klem, and R. Hoffmann. Impact of left ventricular lead position in cardiac resynchronization therapy on left ventricular remodeling. A circumferential strain analysis based on 2D echocardiography. Eur. Heart J. 28:1211–1220, 2007.

    Article  Google Scholar 

  7. Bradley, D. J., E. A. Bradley, K. L. Baughman, R. D. Berger, H. Calkins, S. N. Goodman, D. A. Kass, and N. R. Powe. Cardiac resynchronization and death from progressive heart failure: a meta-analysis of randomized controlled trials. JAMA 289:730–740, 2003.

    Article  Google Scholar 

  8. Clerc, L. Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. 255:335–346, 1979.

    Google Scholar 

  9. COMPANION Investigators. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350:2140–2150, 2004.

    Article  Google Scholar 

  10. Conti, C. R. Cardiac resynchronization therapy for chronic heart failure: Why does it not always work? Clin. Cardiol. 29:335–336, 2006.

    Article  Google Scholar 

  11. Daubert, C., C. Leclercq, H. Le Breton, D. Gras, D. Pavin, Y. Pouvreau, P. Van Verooij, N. Bakels, and P. Mabo. Permanent left atrial pacing with a specifically designed coronary sinus lead. Pacing Clin. Electrophysiol. 20:2755–2764, 1997.

    Article  Google Scholar 

  12. Daubert, J. C., P. Ritter, H. Le Breton, D. Gras, C. Leclercq, A. Lazarus, J. Mugica, P. Mabo, and S. Cazeau. Permanent left ventricular pacing with transvenous leads inserted into the coronary veins. Pacing Clin. Electrophysiol. 21:239–245, 1998.

    Article  Google Scholar 

  13. Foster, K. R., and H. P. Schwan. Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 17:25–104, 1989.

    Google Scholar 

  14. Geneser, S. E., S. Choe, R. M. Kirby, et al. 2D stochastic finite element study of the influence of organ conductivity in ECG forward modeling. Int. J. Bioelectromagn. 7:321–324, 2005.

    Google Scholar 

  15. Gras, D., C. Leclercq, A. S. Tang, C. Bucknall, H. O. Luttikhuis, and A. Kirstein-Pedersen. Cardiac resynchronization therapy in advanced heart failure the multicenter InSync clinical study. Eur. J. Heart Fail. 4:311–320, 2002.

    Article  Google Scholar 

  16. Hodgkin, A. L. The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26:339–409, 1951.

    Article  Google Scholar 

  17. Hooks, D. A., M. L. Trew, B. J. Caldwell, G. B. Sands, I. J. LeGrice, and B. H. Smaill. Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Circ. Res. 101:103–112, 2007.

    Article  Google Scholar 

  18. Irnich, W. The fundamental law of electrostimulation and its application to defibrillation. Pacing Clin. Electrophysiol. 13:1433–1447, 1990.

    Article  Google Scholar 

  19. Janjic, T., S. Thomsen, and J. A. Pearce. Anisotropic electrical conductivity of tissues at RF frequencies. Paper presented at 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam, 1996.

  20. Johnson, C. R., R. S. MacLeod, and P. R. Ershler. A computer model for the study of electrical current flow in the human thorax. Comput. Biol. Med. 22:305–323, 1992.

    Article  Google Scholar 

  21. Kass, D. A. Predicting cardiac resynchronization response by QRS duration: the long and short of it. J. Am. Coll. Cardiol. 42:2125–2127, 2003.

    Article  Google Scholar 

  22. Khan, F. Z., M. S. Virdee, S. P. Flynn, and D. P. Dutka. Left ventricular lead placement in cardiac resynchronization therapy: Where and how? Europace 11:554–561, 2009.

    Article  Google Scholar 

  23. Laske, T. G., N. D. Skadsberg, and P. A. Iaizzo. A novel ex vivo heart model for the assessment of cardiac pacing systems. J. Biomech. Eng. 127:894–898, 2005.

    Article  Google Scholar 

  24. MIRACLE Study Group. Cardiac resynchronization in chronic heart failure. N. Engl. J. Med. 346:1845–1853, 2002.

    Article  Google Scholar 

  25. Moss, A. J., R. J. Rivers, Jr., L. S. Griffith, J. A. Carmel, and E. B. Millard, Jr. Transvenous left atrial pacing for the control of recurrent ventricular fibrillation. N. Engl. J. Med. 278:928–931, 1968.

    Article  Google Scholar 

  26. Murphy, R. T., G. Sigurdsson, S. Mulamalla, D. Agler, Z. B. Popovic, R. C. Starling, B. L. Wilkoff, J. D. Thomas, and R. A. Grimm. Tissue synchronization imaging and optimal left ventricular pacing site in cardiac resynchronization therapy. Am. J. Cardiol. 97:1615–1621, 2006.

    Article  Google Scholar 

  27. Panescu, D., J. G. Webster, W. J. Tompkins, and R. A. Stratbucker. Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax. IEEE Trans. Biomed. Eng. 42:185–192, 1995.

    Article  Google Scholar 

  28. Roberts, D. E., L. T. Hersh, and A. M. Scher. Influence of cardiac fiber orientation on wavefront voltage conduction velocity, and tissue resistivity in the dog. Circ. Res. 44:701–712, 1979.

    Google Scholar 

  29. Rush, S., J. A. Abildskov, and R. McFee. Resistivity of body tissues at low frequencies. Circ. Res. 12:40–50, 1963.

    Google Scholar 

  30. Sogaard, P., H. Egeblad, W. Y. Kim, H. K. Jensen, A. K. Pedersen, P. O. Kristensen, and P. T. Mortensen. Tissue Doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. J. Am. Coll. Cardiol. 40:723–730, 2002.

    Article  Google Scholar 

  31. Ypenburg, C., J. J. Westenberg, G. B. Bleeker, N. Van de Veire, N. A. Marsan, M. M. Henneman, E. E. van der Wall, M. J. Schalij, T. P. Abraham, S. S. Barold, and J. J. Bax. Noninvasive imaging in cardiac resynchronization therapy. Part 1. Selection of patients. Pacing Clin. Electrophysiol. 31:1475–1499, 2008.

    Article  Google Scholar 

  32. Yu, C. M., J. Wing-Hong Fung, Q. Zhang, and J. E. Sanderson. Understanding nonresponders of cardiac resynchronization therapy—current and future perspectives. J. Cardiovasc. Electrophysiol. 16:1117–1124, 2005.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank David Bourn for his help in developing and analyzing the model, Professors David Benditt and William Durfee for their encouragement to perform such analyses, Gary Williams for his assistance with the figures, Emily Fitch for her assistance with literature searches, and Monica Mahre for her assistance with the preparation of this manuscript. We would also like to acknowledge the University of Minnesota Supercomputing Institute for providing computing resources. This research was supported by a GAANN grant (Graduate Assistance in Areas of National Need) from the U.S. Department of Education, as well as the Institute for Engineering in Medicine at the University of Minnesota. We have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Iaizzo.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, S.E., Eggum, J.H. & Iaizzo, P.A. Modeling of Induced Electric Fields as a Function of Cardiac Anatomy and Venous Pacing Lead Location. Cardiovasc Eng Tech 2, 399–407 (2011). https://doi.org/10.1007/s13239-011-0057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-011-0057-3

Keywords

Navigation