Skip to main content
Log in

Simple synthesis of water-dispersible and photoactive titanium dioxide nanoparticles using functionalized poly(ethylene oxide)s

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Versatile and direct synthesis of water-dispersible titanium dioxide (TiO2) nanoparticles in the presence of functionalized poly(ethylene oxide)s (PEO) having carboxylic acid groups is presented. The functionalized PEOs, such as PEO-folate conjugate and PEO-b-poly(maleic acid) (PEO-b-PMAc) as polymeric surfactants, were employed for in situ synthesis of TiO2 nanoparticles through hydrolytic sol-gel process of titanium tetrachloride as a precursor in eco-friendly alcoholic media at a relatively low temperature. Both of the two polymers were found to be very effective for stabilizing TiO2 nanocrystals, exhibiting not only fairly good photocatalytic activities but also water-dispersible property. The core TiO2 crystallites in the size range of 8∼11 nm could be readily controlled in ethanol at a relatively low reaction temperature (70 °C), irrespective of the incipient reaction condition, which showed mixed polymorphs. The TiO2 nanoparticles consist of a few percentages (<10%) of brookite and mostly anatase phases. This process provides a simple and useful in situ preparative route to obtain water-dispersible TiO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nel, T. Xia, L. Madler, and N. Li, Science, 311, 622 (2006).

    Article  CAS  Google Scholar 

  2. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, Chem. Rev., 110, 389 (2010).

    Article  CAS  Google Scholar 

  3. P. Raveendran, J. Fu, and S. L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003).

    Article  CAS  Google Scholar 

  4. A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Nevecna, and R. Zboril, J. Phys. Chem. B, 110, 16248 (2006).

    Article  CAS  Google Scholar 

  5. R. W.-Y. Sun, R. Chen, N. P.-Y. Chung, C.-M. Ho, C.-L. S. Lin, and C.-M. Che, Chem. Commun., 5059 (2005).

    Google Scholar 

  6. H. -M. Xiong, Y. Xu, Q.-G. Ren, and Y.-Y. Xia, J. Am. Chem. Soc., 130, 7522 (2008).

    Article  CAS  Google Scholar 

  7. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Nature, 396, 152 (1998).

    Article  CAS  Google Scholar 

  8. W. -S. Cho, B.-C. Kang, J. K. Lee, J. Jeong, J.-H. Che, and S. H. Seok, Part. Fibre Toxicol., 10, 9 (2013).

    Article  CAS  Google Scholar 

  9. J. Yao and C. Wang, Int. J. Photoenergy, 643182 (2010).

    Google Scholar 

  10. H. Shi, R. Magaye, V. Castranova, and J. Zhao, Part. Fibre Toxicol., 10, 15 (2013).

    Article  CAS  Google Scholar 

  11. A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, and N. von Goetz, Environ. Sci. Technol., 46, 2242 (2012).

    Article  CAS  Google Scholar 

  12. J. Wang, G. Zhou, C. Chen, H. Yu, T. Wang, Y. Ma, G. Jia, Y. Gao, B. Li, J. Sun, Y. Li, F. Jiao, Y. Zhao, and Z. Chai, Toxicol. Lett., 168, 176 (2007).

    Article  CAS  Google Scholar 

  13. Y. Teow, P. V. Asharani, M. P. Hande, and S. Valiyaveettil, Chem. Commun., 47, 7025 (2011).

    Article  CAS  Google Scholar 

  14. T. -S. Kang, A. P. Smith, B. E. Taylor, and M. F. Durstock, Nano Lett., 9, 601 (2009).

    Article  CAS  Google Scholar 

  15. C. S. Karthikeyan, H. Wietasch, and M. Thelakkat, Adv. Mater., 19, 1091 (2007).

    Article  CAS  Google Scholar 

  16. M. P. L. Werts, M. Badila, C. Brochon, A. Hebraud, and G. Hadziioannou, Chem. Mater., 20, 1292 (2008).

    Article  CAS  Google Scholar 

  17. J. Seo, H. Chung, M. Kim, J. Lee, I. Choi, and J. Cheon, Small, 3, 850 (2007).

    Article  CAS  Google Scholar 

  18. P. Thevenot, J. Cho, D. Wavhal, R. B. Timmons, and L. Tang, Nanomedicine, 4, 226 (2008).

    Article  CAS  Google Scholar 

  19. D. M. Blake, P.-C. Maness, Z. Huang, E. J. Wolfrum, and J. Huang, Sep. Purif. Methods, 28, 1 (1999).

    Article  CAS  Google Scholar 

  20. R. Tedja, M. Lim, R. Amal, and C. Marquis, ACS nano, 6, 4083 (2013).

    Article  CAS  Google Scholar 

  21. D. Reyes-Coronado, G. Rodriguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, Nanotechnology, 19, 145605 (2008).

    Article  CAS  Google Scholar 

  22. J. -G. Li, T. Ishigaki, and X. Sun, J. Phys. Chem. C, 111, 4969 (2007).

    Article  CAS  Google Scholar 

  23. C. -T. Dinh, T.-D. Ngugyen, F. Kleitz, and T.-O. Do, ACS nano, 3, 3737 (2009).

    Article  CAS  Google Scholar 

  24. H. Tokuhisa and P. T. Hammond, Adv. Funct. Mater., 13, 831 (2003).

    Article  CAS  Google Scholar 

  25. G. Guerrero, P. H. Mutin, and A. Vioux, Chem. Mater., 13, 4367 (2001).

    Article  CAS  Google Scholar 

  26. T. Sugimoto, X. Zhou, and A. Muramatsu, J. Colloid Interf. Sci., 259, 43 (2003).

    Article  CAS  Google Scholar 

  27. S. Liufu, H. Xiao, and Y. Li, J. Colloid Interf. Sci., 281, 55 (2005).

    Google Scholar 

  28. S. Gui, X. Sang, L. Zheng, Y. Ze, X. Zhao, L. Sheng, Q. Sun, Z. Cheng, J. Cheng, R. Hu, L. Wang, F. Hong, and M. Tang, Part. Fibre Toxicol., 10, 4 (2013).

    Article  CAS  Google Scholar 

  29. M. Niederberger, G. Garnweitner, F. Krumeich, R. Nesper, H. Colfen, and M. Antoniett, Chem. Mater., 16, 1202 (2004).

    Article  CAS  Google Scholar 

  30. T. Kotsokechagia, F. Cellesi, A. Thomas, M. Niederberger, and N. Tirelli, Langmuir, 24, 6988 (2008).

    Article  CAS  Google Scholar 

  31. K. J. Edler, A. M. Hawley, B. M. D. O’Driscoll, and R. Schweins, Chem. Mater., 22, 4579 (2010).

    Article  CAS  Google Scholar 

  32. M. Gnauck, E. Jaehne, T. Blaettler, S. Tosatti, M. Textor, and H.-J. P. Adler, Langmuir, 23, 377 (2007).

    Article  CAS  Google Scholar 

  33. S. Yamaguchi, H. Kobayashi, T. Narita, K. Kanehira, S. Sonezaki, N. Kudo, Y. Kubota, S. Terasaka, and K. Houkin, Ultrason. Sonochem., 18, 1197 (2011).

    Article  CAS  Google Scholar 

  34. S. Yamaguchi, H. Kobayashi, T. Narita, K. Kanehira, S. Sonezaki, Y. Kubota, S. Terasaka, and Y. Iwasaki, Photochem. Photobiol., 86, 964 (2010).

    Article  CAS  Google Scholar 

  35. T. H. Kim, K. Kim, G. H. Park, J. H. Choi, S. Lee, H.-J. Kang, J. Y. Lee, and J. Kim, Macromol. Res., 17, 770 (2009).

    Article  CAS  Google Scholar 

  36. J. H. Maeng, D.-H. Lee, K. H. Jung, Y.-H. Bae, I.-S. Park, S. Jeong, Y.-S. Jeon, C.-K. Shim, W. Kim, J. Kim, J. Lee, Y.-M. Lee, J.-H. Kim, W.-H. Kim, and S. S. Hong, Biomaterials, 31, 4995 (2010).

    Article  CAS  Google Scholar 

  37. J. Kim, S. Choi, K. M. Kim, D. H. Go, H. J. Jeon, J. Y. Lee, H. S. Park, C. H. Lee, and H. M. Park, Macromol. Res., 15, 31 (2007).

    Article  Google Scholar 

  38. H. Gilman and F. K. Cartledge, J. Organomet. Chem., 2, 447 (1964).

    Article  CAS  Google Scholar 

  39. J. Kim, S. Lee, J. H. Nam, Y. J. Cho, J. Kim, J. Y. Lee, H.-J. Kang, S. Kim, H. T. Kim, H. M. Park, and J. Kim, Macromol. Res., 19, 716 (2011).

    Article  CAS  Google Scholar 

  40. Y. -W. Jun, M. F. Casula, J.-H. Sim, S. Y. Kim, J. Cheon, and A. P. Alivisatos, J. Am. Chem. Soc., 125, 15981 (2003).

    Article  CAS  Google Scholar 

  41. J. Pan, G. Liu, G. Q. Lu, and H.-M. Cheng, Angew. Chem. Int. Ed., 50, 2133 (2011).

    Article  CAS  Google Scholar 

  42. H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, and G. Q. Lu, Nature, 453, 638 (2008).

    Article  CAS  Google Scholar 

  43. A. Selloni, Nat. Mater., 7, 613 (2008).

    Article  CAS  Google Scholar 

  44. A. Maliakal, H. Katz, P. M. Cotts, S. Subramoney, and P. Mirau, J. Am. Chem. Soc., 127, 14655 (2005).

    Article  CAS  Google Scholar 

  45. J. E. Beek and R. A. J. Janssen, Adv. Funct. Mater., 12, 519 (2002).

    Article  CAS  Google Scholar 

  46. S. H. Othman, S. A. Rashid, T. I. M. Ghazi, and N. Abdullah, J. Nanomater., 718214 (2012).

    Google Scholar 

  47. J. Yu, Y. Su, B. Cheng, and M. Zhou, J. Mol. Catal. A: Chemical, 258, 104 (2006).

    Article  CAS  Google Scholar 

  48. H. Chens, J. Ma, Z. Hao, and L. Qi, Chem. Mater., 7, 663 (1995).

    Article  Google Scholar 

  49. Y. Han, H.-S. Kim, and H. Kim, J. Nanomater., 427453 (2012).

    Google Scholar 

  50. P. D. Cozzoli, A. Komowski, and H. Weller, J. Am. Chem. Soc., 126, 14539 (2003).

    Article  CAS  Google Scholar 

  51. X. Wu, D. Wang, and S. Yang, J. Colloid Interf. Sci., 222, 37 (2007).

    Article  CAS  Google Scholar 

  52. J. M. Pettibone, D. M. Cwiertny, M. Scherer, and V. H. Grassian, Langmuir, 24, 6659 (2008).

    Article  CAS  Google Scholar 

  53. L. Andronic, D. Perniu, and A. Duta, J. Sol-Gel Sci. Technol., 66, 472 (2013).

    Article  CAS  Google Scholar 

  54. M. Wisniewska, S. Chibowski, and T. Urban, React. Funct. Polym., 72, 791 (2012).

    Article  CAS  Google Scholar 

  55. J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, Nanomedicine, 6, 715 (2011).

    Article  CAS  Google Scholar 

  56. C. Lorente and A. H. Thomas, Acc. Chem. Res., 39, 395 (2006).

    Article  CAS  Google Scholar 

  57. T. Rajh, L. X. Chen, K. Lukas, T. Liu, M. C. Thurnauer, and D. M. Yiede, J. Phys. Chem. B, 106, 10543 (2002).

    Article  CAS  Google Scholar 

  58. Y. Ohno, K. Tomita, Y. Komatsubara, T. Taniguchi, K. Katsumata, N. Matsushita, T. Kogure, and K. Okada, Cryst. Growth Des., 11, 4831 (2011).

    Article  CAS  Google Scholar 

  59. A. Pottier, S. Cassaignon, C. Chaneac, F. Villain, E. Tronc, and J.-P. Jolivet, J. Mater. Chem., 13, 877 (2003).

    Article  CAS  Google Scholar 

  60. K. Tomitta, V. Petrykin, M. Kobayashi, M. Shiro, M. Yoshimura, and M. Kakihana, Angew. Chem. Int. Ed., 45, 2378 (2006).

    Article  CAS  Google Scholar 

  61. A. Mattsson and L. Osterlund, J. Phys. Chem. C, 114, 14121 (2010).

    Article  CAS  Google Scholar 

  62. H. Chen, C. E. Nanayakkara, and V. H. Grassian, Chem. Rev., 112, 5919 (2012).

    Article  CAS  Google Scholar 

  63. M. Mehrvar, W. A. Anderson, and M. Moo-Young, Int. J. Photoenergy, 4, 141 (2002).

    Article  CAS  Google Scholar 

  64. T. Velegraki, I. Poulios, M. Charalabaki, N. Kalogerakis, P. Samaras, and D. Mantzavinos, Appl. Catal. B: Environ., 62, 159 (2006).

    Article  CAS  Google Scholar 

  65. J. Jiang, G. Oberdorster, and P. Biswas, J. Nanopart. Res., 11, 77 (2009).

    Article  CAS  Google Scholar 

  66. J. Xiao, W. Chen, F. Wang, and J. Du, Macromolecules, 46, 375 (2013).

    Article  CAS  Google Scholar 

  67. W. A. Lee, N. Pernodet, B. Li, C. H. Lin, E. Hatchwell, and M. H. Rafailovich, Chem. Commun., 4815 (2007).

    Google Scholar 

  68. S. R. Hall, V. M. Swinerd, F. N. Newby, A. M. Collins, and S. Mann, Chem. Mater., 18, 598 (2006).

    Article  CAS  Google Scholar 

  69. S. Singh, H. Mahalingam, and P. K. Singh, Appl. Catal. A: General, 462/463, 178 (2013).

    Article  CAS  Google Scholar 

  70. M. Sokmen, I. Tatlidil, C. Breen, F. Clegg, C. K. Buruk, T. Sivlim, and S. Akkan, J. Hazard Mater., 187, 199 (2011).

    Article  CAS  Google Scholar 

  71. K. Tanaka, M. F. V. Capule, and T. Hisanaga, Chem. Phys. Lett., 187, 73 (1991).

    Article  CAS  Google Scholar 

  72. Q. -L. Zhang, L.-C. Du, Y.-X. Weng, L. Wang, H.-Y. Chen, and J.-Q. Li, J. Phys. Chem. B, 108, 15077 (2004).

    Article  CAS  Google Scholar 

  73. H. Park, Y. Park, W. Kim, and W. Choi, J. Photochem. Photobiol. C: Photochem. Rev., 15, 1 (2013).

    Article  CAS  Google Scholar 

  74. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995).

    Article  CAS  Google Scholar 

  75. C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, and J.-M. Herrmann, J. Photochem. Photobiol. A: Chem., 158, 27 (2003).

    Article  CAS  Google Scholar 

  76. G. M. Madhu, M. A. L. A. Raj, and K. V. K. Pai, J. Environ. Biol., 30, 259 (2009).

    CAS  Google Scholar 

  77. A. -P. Zhang and Y.-P. Sun, World J. Gastroentrol., 10, 3191 (2004).

    CAS  Google Scholar 

  78. S. S. Mamo, K. Kanehira, S. Sonezaki, and A. Taniguchi, Int. J. Mol. Sci., 13, 3703 (2012).

    Article  CAS  Google Scholar 

  79. Y. Zhang, L. Wu, Q. Zeng, and J. Zhi, J. Phys. Chem. C, 112, 16457 (2008).

    Article  CAS  Google Scholar 

  80. Y. Li, N.-H. Lee, D.-S. Hwang, J. S. Song, E. G. Lee, and S.-J. Kim, Langmuir, 20, 10838 (2004).

    Article  CAS  Google Scholar 

References

  1. J. Kim, S. Choi, K. M. Kim, D. H. Go, H. J. Jeon, J. Y. Lee, H. S. Park, C. H. Lee, and H. M. Park, Macromol. Res., 15, 31 (2007).

    Article  Google Scholar 

  2. J. H. Maeng, D.-H. Lee, K. H. Jung, Y.-H. Bae, I.-S. Park, S. Jeong, Y.-S. Jeon, C.-K. Shim, W. Kim, J. Kim, J. Lee, Y.-M. Lee, J.-H. Kim, W.-H. Kim, and S. S. Hong, Biomaterials, 31, 4995 (2010).

    Article  CAS  Google Scholar 

  3. J. Kim, S. Lee, J. H. Nam, Y. J. Cho, J. Kim, J. Y. Lee, H.-J. Kang, S. Kim, H. T. Kim, H. M. Park, and J. Kim, Macromol. Res., 19, 716 (2011).

    Article  CAS  Google Scholar 

  4. N. Nakayama and T. Hayashi, Colloid Surf. A: Physicochem. Eng. Asp., 317, 543 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungahn Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahng, SH., Kwon, N.H., Kim, H.C. et al. Simple synthesis of water-dispersible and photoactive titanium dioxide nanoparticles using functionalized poly(ethylene oxide)s. Macromol. Res. 22, 445–456 (2014). https://doi.org/10.1007/s13233-014-2062-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2062-5

Keywords

Navigation