Skip to main content
Log in

First report of a tropical Lysobacter enzymogenes producing bifunctional endoglucanase activity towards carboxymethylcellulose and chitosan

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

In the past, Lysobacter spp. were found only in temperate and sub-tropical zones. In order to assess the existence of Lysobacter spp. in tropical environments, samples were collected from grass-covered soil in Thailand. Among several bacteria obtained, isolate 521 (NCCB 100553) was identified as Lysobacter enzymogenes based on morphology and physiological tests along with 16S rRNA gene sequence analysis. Phenotypic characteristic variations of L. enzymogenes 521 with respect to the most studied strain from temperate regions, L. enzymogenes C3, were observed. The growth rate, carboxymethylcellulase (CMCase) and chitosanase activity of L. enzymogenes 521 were clearly higher than those of L. enzymogenes C3. Nucleotide and predicted amino acid sequences of the endoglucanase derived were deduced from draft genome sequencing. Phylogenetic analysis of the endoglucanase gene and multiple alignment of the deduced amino acid sequence illustrated that the endoglucanase (Cel8A) from L. enzymogenes 521 displayed homology to family 8 glycoside hydrolases (GHF-8), and was found to be similar to the bifunctional endoglucanase (Cel8A) from Lysobacter sp. IB-9374. Bifunctional CMCase and chitosanase activities of a purified endoglucanase with a mass of 41 kDa from L. enzymogenes 521 were revealed by zymogram analysis. This is the first report on the phenotypical characteristics, the endoglucanase with bifunctional CMCase and chitosanase activities, and the endoglucanase gene, from L. enzymogenes from a tropical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adachi W, Sakihama Y, Shimizu S, Sunami T, Fukazawa T, Suzuki M, Yatsunami R, Nakamura S, Takénaka A (2004) Crystal structure of family GH-8 chitosanase with subclass II specificity from Bacillus sp. K17. J Mol Biol 343:785–795

    Article  CAS  PubMed  Google Scholar 

  • Alzari PM, Dominguez R (1996) The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. Structure 4:265–275

    Article  CAS  PubMed  Google Scholar 

  • Aslam Z, Yasir M, Jeon CO, Chung YR (2009) Lysobacter oryzae sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.). Int J Syst Evol Microbiol 59:675–680

    Article  CAS  PubMed  Google Scholar 

  • Bischoff KM, Rooney AP, Li XL, Liu S, Hughes SR (2006) Purification and characterization of a family 5 endoglucanase from a moderately thermophilic strain of Bacillus licheniformis. Biotechnol Lett 28:1761–1765

    Article  CAS  PubMed  Google Scholar 

  • Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28:367–393

    Article  Google Scholar 

  • Cupp-Enyard C (2008) Sigma’s non-specific protease activity assay-casein as a substrate. J Vis Exp 19:e899. doi: 10.3791/899

  • Da Vinha FNM, Gravina-Oliveira MP, Franco MN, Macrae A, Da Silva Bon EP, Nascimento RP, Coelho RRR (2011) Cellulase production by Streptomyces viridobrunneus SCPE-09 using lignocellulosic biomass as inducer substrate. Appl Biochem Biotechnol 164:256–267

    Article  CAS  PubMed  Google Scholar 

  • Deka D, Bhargavi P, Sharma A, Goyal D, Jawed M, Goyal A (2011) Enhancement of cellulase activity from a new strain of Bacillus subtilis by medium optimization and analysis with various cellulosic substrates. Enzyme Res 2011:1–8

    Article  Google Scholar 

  • Glogauer A, Martini VP, Faoro H, Couto GH, Müller-Santos M, Monteiro RA, Mitchell DA, Souza EM, Pedrosa F, Krieger N (2011) Identification and characterization of a new true lipase isolated through metagenomic approach. Microb Cell Fact 10:54

  • Hedges A, Wolfe RS (1974) Extracellular enzyme from Myxobacter AL-1 that exhibits both β-1, 4-glucanase and chitosanase activities. J Bacteriol 120:844–853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung HM, Ten LN, Im WT, Yoo SA, Lee ST (2008) Lysobacter ginsengisoli sp. nov., a novel species isolated from soil in Pocheon Province, South Korea. J Microbiol Biotechnol 18:1496–1499

    CAS  PubMed  Google Scholar 

  • Kimoto H, Kusaoke H, Yamamoto I, Fujii Y, Onodera T, Taketo A (2002) Biochemical and genetic properties of Paenibacillus glycosyl hydrolase having chitosanase activity and discoidin domain. J Biol Chem 277:14695–14702

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi DY, El-Barrad N (1996) Selection of bacterial antagonists using enrichment cultures for the control of summer patch disease in Kentucky bluegrass. Curr Microbiol 32:106–110

    Article  CAS  Google Scholar 

  • Kobayashi DY, Yuen GY (2007) The potential of Lysobacter spp. as bacterial biological control agents for plant diseases. CAB Rev Perspect Agric Vet Sci Nutr Nat Res 2:1–11

    Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:1–10

    Article  Google Scholar 

  • Kurakake M, Yo-u S, Nakagawa K, Sugihara M, Komaki T (2000) Properties of chitosanase from Bacillus cereus S1. Curr Microbiol 40:6–9

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Liu M, Liu Y, Wang Y, Luo X, Dai J, Fang C (2011) Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. Int J Syst Evol Microbiol 61:433–437

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265

    CAS  PubMed  Google Scholar 

  • Macedo EP, Cerqueira CLO, Souza DAJ, Bispo ASR, Coelho RRR, Nascimento RP (2013) Production of cellulose-degrading enzyme on sisal and other agro-industrial residues using a new Brazilian actinobacteria strain Streptomyces sp. SLBA-08. Braz J Chem Eng 30:729–735

    Article  CAS  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller GL, Blum R, Glennon WE, Burton AL (1960) Measurement of carboxymethylcellulase activity. Anal Biochem 1:127–132

    Article  CAS  Google Scholar 

  • Mitsutomi M, Isono M, Uchiyama A, Nikaidou N, Ikegami T, Watanabe T (1998) Chitosanase activity of the enzyme previously reported as β-1, 3–1, 4-glucanase from Bacillus circulans WL-12. Biosci Biotechnol Biochem 62:2107–2114

    Article  CAS  PubMed  Google Scholar 

  • Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6:427–448

    Article  CAS  Google Scholar 

  • Ogura J, Toyoda A, Kurosawa T, Chong AL, Chohnan S, Masaki T (2006) Purification, characterization, and gene analysis of cellulase (Cel8A) from Lysobacter sp. IB-9374. Biosci Biotechnol Biochem 70:2420–2428

    Article  CAS  PubMed  Google Scholar 

  • Palumbo JD, Sullivan RF, Kobayashi DY (2003) Molecular characterization and expression in Escherichia coli of three β-1, 3-glucanase genes from Lysobacter enzymogenes strain N4-7. J Bacteriol 185:4362–4370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelletier A, Sygusch J (1990) Purification and characterization of three chitosanase activities from Bacillus megaterium P1. Appl Environ Microbiol 56:844–848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reichenbach H (2006) The genus Lysobacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes—a handbook on the biology of bacteria. Vol 6: Proteobacteria: gamma subclass, 3rd edn. Springer, New York, pp 939–957

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn, vol 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

  • Shankar T, Isaiarasu L (2011) Cellulase production by Bacillus pumilus EWBCM1 under varying cultural conditions. Middle East J Sci Res 8:40–45

    CAS  Google Scholar 

  • Srinivasan S, Kim MK, Sathiyaraj G, Kim HB, Kim YJ, Yang DC (2010) Lysobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60:1543–1547

    Article  CAS  PubMed  Google Scholar 

  • Staskawicz B, Dahlbeck D, Keen N, Napoli C (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169:5789–5794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan RF, Holtman MA, Zylstra GJ, White JF, Kobayashi DY (2003) Taxonomic positioning of two biological control agents for plant diseases as Lysobacter enzymogenes based on phylogenetic analysis of 16S rDNA, fatty acid composition and phenotypic characteristics. J Appl Microbiol 94:1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Tanabe T, Morinaga K, Fukamizo T, Mitsutomi M (2003) Novel chitosanase from Streptomyces griseus HUT 6037 with transglycosylation activity. Biosci Biotechnol Biochem 67:354–364

    Article  CAS  PubMed  Google Scholar 

  • Ten LN, Jung HM, Im WT, Yoo SN, Lee ST (2008) Lysobacter daecheongensis sp. nov., isolated from sediment of stream near the Daechung dam in South Korea. J Microbiol 46:519–524

    Article  CAS  PubMed  Google Scholar 

  • Ten LN, Jung HM, Im WT, Yoo SA, Oh HM, Lee ST (2009) Lysobacter panaciterrae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 59:958–963

    Article  CAS  PubMed  Google Scholar 

  • Trasar-Cepeda C, Gil-Sotres F, Leiros MC (2007) Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain. Soil Biol Biochem 39:311–319

    Article  CAS  Google Scholar 

  • Wang Y, Dai J, Zhang L, Luo X, Li Y, Chen G, Tang Y, Meng Y, Fang C (2009) Lysobacter ximonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 59:786–789

    Article  CAS  PubMed  Google Scholar 

  • Wei DQ, Yu TT, Yao JC, Zhou EM, Song ZQ, Yin YR, Ming H, Tang SK, Li WJ (2012) Lysobacter thermophilus sp. nov., isolated from a geothermal soil sample in Tengchong, south-west China. Antonie Van Leeuwenhoek 102:643–651

    Article  CAS  PubMed  Google Scholar 

  • Weon HY, Kim BY, Baek YK, Yoo SH, Kwon SW, Stackebrandt E, Go SJ (2006) Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int J Syst Evol Microbiol 56:947–951

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Liu P, Liu J (2008) Advance in chitosan hydrolysis by non-specific cellulases. Bioresour Technol 99:6751–6762

    Article  CAS  PubMed  Google Scholar 

  • Yabuki M, Uchiyama A, Suzuki K, Ando A, Fujii T (1988) Purification and properties of chitosanase from Bacillus circulans MH-K1. J Gen Appl Microbiol 34:255–270

    Article  CAS  Google Scholar 

  • Zhang L, Bai J, Wang Y, Wu GL, Dai J, Fang CX (2011) Lysobacter korlensis sp. nov. and Lysobacter bugurensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:2259–2265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Chulalongkorn University Dutsadi Phiphat Scholarship, Ratchadaphiseksomphot Endowment Fund 2014 of Chulalongkorn University (CU-57-043-EN) and Eveleigh-Fenton Fund of Rutgers, the State University of New Jersey for financial support. The authors are grateful to Assistant Professor Tosak Seelanan, PhD (Chulalongkorn University) for molecular technical support. Assistance from members of the Plant Biomass Utilization Research Unit (PBURU), Department of Botany, Faculty of Science, Chulalongkorn University is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donald Y. Kobayashi, Pongtharin Lotrakul or Hunsa Punnapayak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraihom, S., Kobayashi, D.Y., Lotrakul, P. et al. First report of a tropical Lysobacter enzymogenes producing bifunctional endoglucanase activity towards carboxymethylcellulose and chitosan. Ann Microbiol 66, 907–919 (2016). https://doi.org/10.1007/s13213-015-1170-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1170-6

Keywords

Navigation