Skip to main content
Log in

Congruence of ribosomal DNA sequencing, fatty acid methyl ester profiles and morphology for characterization of the genus Rhizophagus (arbuscular mycorrhiza fungus)

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Difficulties in obtaining sterile axenic cultures and heterogeneity in nuclear-encoded ribosomal DNA (n-rDNA) sequences within a single arbuscular mycorrhizal spore make genetic analysis of arbuscular mycorrhizal fungi (AMF) a complicated task, and currently available methods of genotyping are inadequate for identification to the species level. Therefore, we applied a multipronged approach on different isolates grown in root organ culture (ROC) belonging to the genus Rhizophagus which were not characterized at species level. Each strain was characterized using the fatty acid methyl ester profile (FAME), partial sequencing of a small subunit-internal transcribed spacer (SSU-ITS) and a large subunit (LSU) region of n-rDNA, and morphological examination of spores. Neighbor-joining trees obtained from the SSU-ITS rDNA sequences were broadly similar to those obtained from the LSU rDNA sequences. FAME profiles of the same isolates used for molecular characterization were obtained using fatty acid datasets, and results were compared to a neighbor-joining tree of n-rDNA sequence. Based on the results of these studues, a combination of morphology, biomarkers (FAME), and molecular sequencing (of highly variable D1-D2 of LSU and ITS) is recommended for phylogenetic analysis and characterization of species/strain of Glomeromycota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atschul SF, Gish W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  • Bécard G, Fortin J (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T–DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Bentivenga SP, Morton JB (1994) Stability and heredity of fatty acid methyl ester profile in glomalean endomycorrhizal fungi. J Mol Biol 98:1419–1426

    CAS  Google Scholar 

  • Bentivenga SP, Morton JB (1996) Congruence of fatty acid methyl ester profiles and morphological characters of arbuscular mycorrhizal fungi in Gigasporaceae. Proc Natl Acad Sci USA 93:5659–5662

    Article  PubMed  CAS  Google Scholar 

  • Błaszkowski J, Czerniawska B (2008) Glomus irregulare, a new arbuscular mycorrhiza fungus in the Glomeromycota. Mycotaxon 106:247–267

    Google Scholar 

  • Chabot S, Bécard G, Piché Y (1992) Life cycle of Glomus intraradices in root organ culture. Mycologia 84:315–321

    Article  Google Scholar 

  • Clapp JP, Rodriguez A, Dodd JC (2001) Inter–and intra–isolate rRNA large subunit variation in Glomus coronatum spores. New Phytol 149:539–554

    Article  CAS  Google Scholar 

  • Corradi N, Kuhn G, Sanders IR (2004) Monophyly of beta tubulin and H+-ATPase gene variants in Glomus intraradices: consequences for molecular evolutionary studies of AM fungal genes. Fungal Genet Biol 41:262–273

    Article  PubMed  CAS  Google Scholar 

  • da Silva GA, Lumini E, Maia LC, Bonfante P, Bianciotto V (2006) Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences. Mycorrhiza 16:183–189

    Article  PubMed  CAS  Google Scholar 

  • Declerck S, Cranenbrouck S, Dalpé Y, Séguin S, Grandmougin-Ferjani A, Fontaine J, Sancholle M (2000) Glomus proliferum sp. nov: a description based on morphological, biochemical, molecular and monoxenic cultivation data. Mycologia 92:1178–1187

    Article  Google Scholar 

  • Doner LW, Bécard G (1991) Solubilization of gellan gels by chelation of cations. Biotech Tech 5:25–28

    Article  CAS  Google Scholar 

  • Helgason T, Watson IJ, Young JPW (2003) Phylogeny of the Glomerales and Diversisporales (Fungi: Glomeromycota) from actin and elongation factor 1–alpha sequences. FEMS Microbiol Lett 229:127–132

    Article  PubMed  CAS  Google Scholar 

  • Koch AM, Kuhn G, Fontanillas P, Fumagalli L, Goudet J, Sanders IR (2004) High genetic variability and low local diversity in an arbuscular mycorrhizal fungal population. Proc Natl Acad Sci USA 101:2369–2374

    Article  PubMed  CAS  Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  PubMed  Google Scholar 

  • Krüger M, Walker C, Schüßler A (2011) Acaulospora brasiliensis comb. Nov. and Acaulospora alpina (Glomeromycota) from upland Scotland: morphology, molecular phylogeny and DNA-based detection in roots. Mycorrhiza 21:557–586

    Article  Google Scholar 

  • Lanfranco L, Bianciotto V, Lumini E, Souza M, Morton JB, Bonfante P (2001) A combined morphological and molecular approach to characterize isolates of arbuscular mycorrhizal fungi in Gigaspora (Glomales). New Phytol 152:169–179

    Article  CAS  Google Scholar 

  • Larsen J, Olsson PA, Jakobsen I (1998) The use of fatty acid signatures to study mycelial interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the saprotrophic fungus Fusarium culmorum in root-free soil. Mycol Res 102:1491–1496

    Article  CAS  Google Scholar 

  • Madan R, Pankhurst C, Hawke B, Smith S (2002) Use of fatty acid for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biol Biochem 34:125–128

    Article  CAS  Google Scholar 

  • Maia LC, Kimbrough JW (1994) Ultrastructural studies on spores of Glomus intraradices. Int J Plant Sci 155:689–698

    Article  Google Scholar 

  • Morton JB (2009) Reconciliation of conflicting morphological and rRNA gene phylogenies of fungi in Glomeromycota based on underlying patterns and processes. In: Azcon-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas-functional processes and ecological impact. Springer, Heidelberg, pp 137–154

    Chapter  Google Scholar 

  • Morton JB, Msiska Z (2010) Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza 20:483–496

    Article  PubMed  Google Scholar 

  • Morton JB, Bentivenga SP, Wheeler WW (1993) Germplasm in the international collection of arbuscular mycorrhizal fungi (INVAM) and procedures for culture development, documentation, and storage. Mycotaxon 48:491–528

    Google Scholar 

  • Oehl F, Silva GA, Goto BT, Sieverding E (2011a) Glomeromycota: three new genera, and glomoid species reorganized. Mycotaxon 116:75–120

    Article  Google Scholar 

  • Oehl F, Sieverding E, Palenzuela J, Kurt Ineichen K, da Silva GA (2011b) Advances in Glomeromycota taxanomy and classification. Int Mycol Assoc Fungus 2:191–199

    Google Scholar 

  • Olsson PA, Bååth E, Jakobsen I, Söderström B (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99:623–629

    Article  CAS  Google Scholar 

  • Peng S, Eisssenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal citrus at high phosphorous supply. Plant Physiol 30:1063–1071

    Google Scholar 

  • Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10:73–80

    Article  CAS  Google Scholar 

  • Redecker D, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi) recent developments and new gene markers. Mycologia 98:885–895

    Article  PubMed  Google Scholar 

  • Sanders IR, Alt M, Groppe K, Boller T, Wiemken A (1995) Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal communities. New Phytol 130:419–427

    Article  CAS  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Schwarzott D, Walker C, Schüßler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol Phylogenet Evol 21:190–197

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal Symbiosis, 2nd edn. Academic, San Diego

    Google Scholar 

  • Stockinger H, Walker C, Schüßler A (2009) Glomus intraradices DAOM 197198 a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187

    Article  PubMed  Google Scholar 

  • Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tiwari P, Adholeya A (2002) In vitro co-culture of two AMF isolates Gigaspora margarita and Glomus intraradices on Ri T-DNA transformed roots. FEMS Microbiol Lett 206:39–43

  • Trouvelot S, Van Tuinen D, Hijri M, Gianinazzi-Pearson V (1999) Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hybridization. Mycorrhiza 8:203–206

    Article  CAS  Google Scholar 

  • Van Tuinen D, Zhao B, Gianinazzi-Pearson V (1998) PCR in studies of AM fungi: from primers to application. In: Varma AK (ed) Mycorrhiza manual. Springer, Berlin, pp 387–399

    Chapter  Google Scholar 

  • Walker C, Schüβler A (2004) Nomenclatural clarifications and new taxa in the Glomeromycota. Mycol Res 108:981–982

    Article  Google Scholar 

  • Walker C, Trappe JM (1993) Names and epithets in the Glomales and Endogonales. Mycol Res 97:339–344

    Article  Google Scholar 

  • Walker C, Vestberg M, Demircik F, Stockinger H, Saito M, Sawaki H, Nishmura I, Schüβler A (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp. Nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycol Res 111:137–153

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

Download references

Acknowledgments

The author thanks the University Grants Commission (UGC) of the Govt of India for the award of a senior research fellowship to carry out doctoral work at The Energy and Resources Institute (TERI), New Delhi. This research was supported by funds provided to TERI by the Department of Biotechnology; Govt of India. The author also gratefully acknowledges Mr Yattendra Joshi for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Adholeya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Beri, S. & Adholeya, A. Congruence of ribosomal DNA sequencing, fatty acid methyl ester profiles and morphology for characterization of the genus Rhizophagus (arbuscular mycorrhiza fungus). Ann Microbiol 63, 1405–1415 (2013). https://doi.org/10.1007/s13213-013-0601-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0601-5

Keywords

Navigation