Skip to main content
Log in

Multifunctional Nanomaterial-alginate Drug Delivery and Imaging System for Cancer Therapy

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Although chemotherapy is mostly performed by direct injection of the chemotherapeutic agents systemically, this approach can cause undesirable side effects in normal tissues and lacks targeting efficiency. In this study, we have developed a micron-sized, bead-type multifunctional anticancer-drug carrier that can be injected in the vicinity of a lesion using a syringe. The multifunctional anticancer-drug carrier bead was fabricated by incorporating functional nanomaterials, such as near-infrared (NIR)-responsive gold nanorod (GNR) and superparamagnetic iron oxide nanoparticles (IONP) that work as a magnetic resonance imaging (MRI) contrast agent, into an alginate hydrogel bead. The carrier bead containing GNR and IONP was spherical, with an average size of 362.2 ± 22.7 µm. These multifunctional anticancer-drug carrier beads could successfully release doxorubicin (Dox) into the external environment upon irradiation with an NIR laser. The laser responsive on-demand release profile demonstrated well-controlled and sustained release of Dox, and the effectiveness of this drug delivery system can be confirmed in vitro by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Additionally, the control experiments evidenced that the thermal effect of GNR was insignificant and the cytotoxic action of Dox was expressed only after irradiation with the NIR laser. The multifunctional anticancer-drug carrier beads can be precisely monitored with the MRI T2 imaging mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Zhang, L., Abdullah, R., Hu, X., Bai, H., Fan, H., He, L., Liang, H., Zou, J., Liu, Y., Sun, Y., Zhang, X. & Tan, W. Engineering of Bioinspired, Size-Controllable, Self-Degradable Cancer-Targeting DNA Nanoflowers via the Incorporation of an Artificial Sandwich Base. J. Am. Chem. Soc. 141, 4282–4290 (2019).

    Article  CAS  Google Scholar 

  2. Park, H., Kim, J., Jung, S. & Kim, W.J. DNA-Au Nanomachine Equipped with I-Motif and G-Quadruplex for Triple Combinatorial Anti-Tumor Therapy. Adv. Funct. Mater. 28, 1705416 (2017).

    Article  Google Scholar 

  3. Cheng, W., Liang, C., Xu, L., Liu, G., Gao, N., Tao, W., Luo, L., Zuo, Y., Wang, X., Zhang, X., Zeng, X. & Mei, L. TPGS-Functionalized Polydopamine-Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy Against Multidrug Resistance. Small 13, 1700623 (2017).

    Article  Google Scholar 

  4. Lin, L.S., Yang, X., Zhou, Z., Yang, Z., Jacobson, O., Liu, Y., Yang, A., Niu, G., Song, J., Yang, H.H. & Chen, X. Yolk-Shell Nanostructure: an Ideal Architecture to Achieve Harmonious Integration of Magnetic-Plasmonic Hybrid Theranostic Platform. Adv. Mater. 29, 1606681 (2017).

    Article  Google Scholar 

  5. Kearney, C.J. & Mooney, D.J. Macroscale Delivery Systems for Molecular and Cellular Payloads. Nat. Mater. 12, 1004–1017 (2013).

    Article  CAS  Google Scholar 

  6. Bencherif, S.A., Sands, R.W., Bhatta, D., Arany, P., Verbeke, C.S., Edwards, D.A. & Mooney, D.J. Injectable Preformed Scaffolds with Shape-Memory Properties. Proc. Natl. Acad. Sci. U.S.A 109, 19590–19595 (2012).

    Article  CAS  Google Scholar 

  7. Shin, D.S., You, J., Rahimian, A., Vu, T., Siltanen, C., Ehsanipour, A., Stybayeva, G., Sutcliffe, J. & Revzin, A. Photodegradable Hydrogels for Capture, Detection, and Release of Live Cells. Angew. Chem. Int. Ed. 53, 8221–8224 (2014).

    Article  CAS  Google Scholar 

  8. Kim, S.H., Lee, B., Heo, J.H., Lee, K.E., Shankar, P., Han, K.H. & Lee, J.H. The Effect of ζ-Potential and Hydrodynamic Size on Nanoparticle Interactions in Hydrogels. Part. Part. Syst. Charact. 36, 1800292 (2019).

    Article  Google Scholar 

  9. Delplace, V., Obermeyer, J. & Shoichet, M. S. Local Affinity Release. ACS Nano 10, 6433–6436 (2016).

    Article  CAS  Google Scholar 

  10. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-Responsive Nanocarriers for Drug Delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  CAS  Google Scholar 

  11. Ling, D., Xia, H., Park, W., Hackett, M.J., Song, C., Na, K., Hui, K.M. & Hyeon, T. pH-Sensitive Nanoformulated Triptolide as a Targeted Therapeutic Strategy for Hepatocellular Carcinoma. ACS Nano 8, 8027–8039 (2014).

    Article  CAS  Google Scholar 

  12. Zhao, X., Kim, J., Cezar, C.A., Huebsch, N., Lee, K., Bouhadir, K. & Mooney, D.J. Active Scaffolds for on-Demand Drug and Cell Delivery. Proc. Natl. Acad. Sci. U.S.A. 108, 67–72 (2011).

    Article  CAS  Google Scholar 

  13. Dam, D.H. M., Lee, J.H., Sisco, P.N., Co, D.T., Zhang, M., Wasielewski, M.R. & Odom, T.W. Direct Observation of Nanoparticle-Cancer Cell Nucleus Interactions. ACS Nano 6, 3318–3326 (2012).

    Article  CAS  Google Scholar 

  14. Noh, J.-Y., Kim, J.-I., Chang, Y. W., Park, J.-M., Song, H.-W., Kang, M.-J. & Pyun, J.-C. Gold Nanoislands Chip for Laser Desorption/Ionization (LDI) Mass Spectrometry. BioChip J. 11, 246–254 (2017).

    Article  CAS  Google Scholar 

  15. Jung, H., Jung, J., Kim, Y.-H., Kwon, D., Kim, B. -G., Na, H.B. & Lee, H.H. Surface Plasmon Resonance Characteristics of Au Nanoparticles Layered Sensor Chip for Direct Detection of Stress Hormone Conjugated by Nanoparticles. BioChip J. 12, 249–256 (2018).

    Article  CAS  Google Scholar 

  16. Yoon, S., Lee, B., Kim, C. & Lee, J.H. Controlled Heterogeneous Nucleation for Synthesis of Uniform Mesoporous Silica-Coated Gold Nanorods with Tailorable Rotational Diffusion and 1 nm-Scale Size Tunability. Cryst. Growth Des. 18, 4731–4736 (2018).

    Article  CAS  Google Scholar 

  17. Lee, J.W., Jung, H., Cho, H.H., Lee, J.H. & Nam, Y. Gold Nanostar-Mediated Neural Activity Control Using Plasmonic Photothermal Effects. Biomaterials 153, 59–69 (2018).

    Article  CAS  Google Scholar 

  18. Wei, H., Bruns, O.T., Kaul, M.G., Hansen, E.C., Barch, M., Wiśniowska, A., Chen, O., Chen, Y., Li, N., Okada, S., Cordero, J.M., Heine, M., Farrar, C.T., Montana, D.M., Adam, G., Ittrich, H., Jasanoff, A., Nielsen, P. & Bawendi, M.G. Exceedingly Small Iron Oxide Nanoparticles as Positive MRI Contrast Agents. Proc. Natl. Acad. Sci. U.S.A. 114, 2325–2330 (2017).

    Article  CAS  Google Scholar 

  19. Yigit, M.V., Mazumdar, D., Kim, H.K., Lee, J.H., Odintsov, B. & Lu, Y. Smart “Turn-on” Magnetic Resonance Contrast Agents Based on Aptamer-Functionalized Superparamagnetic Iron Oxide Nanoparticles. ChemBioChem 8, 1675–1678 (2007).

    Article  CAS  Google Scholar 

  20. Yoon, S., Lee, B., Yun, J., Han, J.G., Lee, J.S. & Lee, J.H. Systematic Study of Interdependent Relationship on Gold Nanorod Synthesis Assisted by Electron Microscopy Image Analysis. Nanoscale 9, 7114–7123 (2017).

    Article  CAS  Google Scholar 

  21. Zhang, Z. & Lin, M. Fast Loading of PEG-SH on CTAB-Protected Gold Nanorods. RSC Adv. 34, 17760–17767 (2014).

    Article  Google Scholar 

  22. Domenech, M., Marrero-Berrios, I., Torres-Lugo, M. & Rinaldi, C. Lysosomal Membrane Permeabilization by Targeted Magnetic Nanoparticles in Alternating Magnetic Fields. ACS Nano 7, 5091–5101 (2013).

    Article  CAS  Google Scholar 

  23. Li, J. & Mooney, D.J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 1, 16071 (2016).

    Article  CAS  Google Scholar 

  24. Park, C., Kong, M., Lee, J.-H., Ryu, S. & Park, S. Detection of Bacillus Cereus Using Bioluminescence Assay with Cell Wall-Binding Domain Conjugated Magnetic Nanoparticles. BioChip J. 12, 287–293 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by GRRC program of Gyeonggi Province (Grant No. GRRC Sungkyunkwan 2017-A01). S. Moon and Y Park are supported by Gyeonggi Science High School R&E fund. K.H.H. appreciate the support from the Research Fellowship Program (NRF-2018R1A6A3A 11047269). The manuscript was written through the contributions of all authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwon Hoon Han, Byungkwon Lim or Jung Heon Lee.

Additional information

Conflict of Interests

The authors declare no competing financial interests.

These authors contrilbuted equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, S., Chang, J., Kwon, N. et al. Multifunctional Nanomaterial-alginate Drug Delivery and Imaging System for Cancer Therapy. BioChip J 13, 236–242 (2019). https://doi.org/10.1007/s13206-019-3309-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-019-3309-1

Keywords

Navigation