Skip to main content

Advertisement

Log in

The Yudomski event and subsequent decline: new evidence from δ34S data of lower and middle Cambrian evaporites in the Tarim Basin, western China

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Marine evaporitic sulfates (gypsum and anhydrite) can record ancient seawater sulfur isotopic data; however, these records are scarce and widely dispersed owing to both restricted environments in which they form and their propensity to be eroded. The late Neoproterozoic–early Cambrian transition was a pivotal timeframe in Earth’s history, witnessing the early evolution of animal life and major environmental changes. Seawater chemistry changed abruptly during this interval, including significant changes to the sulfur cycle as evidenced by unusually high sulfur isotopic values. This positive sulfur excursion, termed the Yudomski Event, has been reported previously from early and middle Cambrian units in Siberia, Iran, Australia, and India. In this study, we provide the first report of the Yudomski Event in early and middle Cambrian evaporites from the Tarim Basin, northwestern China. Our data support this event having been of global significance. We additionally report early and middle Ordovician sulfur data from China, which constrain the decline of the Yudomski Event to the late Cambrian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amthor JE, Grotzinger JP, Schröder S, Bowring SA, Ramezani J, Martin MW, Matter A (2003) Extinction of Cloudina and Namacalathus at the Precambrian–Cambrian boundary in Oman. Geology 31:431–434

    Article  Google Scholar 

  • Awramik SM (1986) The Precambrian-Cambrian boundary and geochemical perturbations. Nature 319:696

    Article  Google Scholar 

  • Benison KC (1995) Permian surfacewater temperatures from NippewallaGroup halite. Kansas Carbonate Evaporite 10:245–251

    Article  Google Scholar 

  • Boucot AJ, Chen X, Scotese CR (2009) Global Paleoclimate reconstruction of Phanerozoic. Science Press, Beijing, pp 1–173 (in Chinese)

    Google Scholar 

  • Brennan ST, Lowenstein TK, Horita J (2004) Seawater chemistry and the advent of biocalcification. Geology 32:473–476

    Article  Google Scholar 

  • Briggs LI (1958) Evaporite facies. J Sediment Res 28:46–56

    Google Scholar 

  • Cai CF, Hu WS, Worden RH (2001) Thermochemical sulphate reduction in Cambro–Ordovician carbonates in Central Tarim. Mar Petrol Geol 18:729–741

    Article  Google Scholar 

  • Cai C, Zhang C, Cai L, Wu G, Jiang L, Xu Z, Li K, Ma A, Chen L (2009) Origins of Palaeozoic oils in the Tarim Basin: evidence from sulfur isotopes and biomarkers. Chem Geol 268:197–210

    Article  Google Scholar 

  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:190–260

    Article  Google Scholar 

  • Cui H, Kaufman A, Xiao S, Peek S, Cao H, Min X, Cai Y, Siegel Z, Liu XM, Peng Y, Schiffbauer JD, Martin AJ (2016) Environmental context for the terminal Ediacaran biomineralization of animals. Geobiology 14:344–363

    Article  Google Scholar 

  • Fike DA, Grotzinger JP, Pratt LM, Summons RE (2006) Oxidation of the Ediacaran ocean. Nature 444:744–747

    Article  Google Scholar 

  • Fox JS, Videtich PE (1997) Revised estimate of δ34S for marine sulfates from the Upper Ordovician: data from the Williston Basin, North Dakota, USA. Appl Geochem 12:97–103

    Article  Google Scholar 

  • Gill B, Lyons TW, Young SA, Kump LR, Knoll AH, Saltzman MR (2011) Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature 469:80–83

    Article  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball earth. Science 281:1342–1346

    Article  Google Scholar 

  • Holser WT (1977) Catastrophic chemical events in the history of the ocean. Nature 267:403–408

    Article  Google Scholar 

  • Holser WT (1984) Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. In: Holland HD, Trendall AF (eds) Patterns of change in earth evolution. Springer, Berlin, pp 123–143

    Chapter  Google Scholar 

  • Holser WT, Kaplan IR (1966) Isotope geochemistry of sedimentary sulfates. Chem Geol 1:93–135

    Article  Google Scholar 

  • Houghton ML (1980) Geochemistry of the Proterozoic Hormuz Evaporites, Southern Iran. MSc thesis, University of Oregon

  • Hovorka SD, Holt RM, Powers DW (2007) Depth indicators in Permian Basin evaporites. In: Schreiber BC, Lugli S, Babel M (eds) Evaporites through space and time, vol 285. The Geological Society of London, Special Publication, London, pp 335–364

    Google Scholar 

  • Hu SZ, Wilkes H, Horsfield B, Chen H, Li SF (2016) On the origin, mixing and alteration of crude oils in the Tarim Basin. Org Geochem 97:17–34

    Article  Google Scholar 

  • Jones DS, Fike DA (2013) Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate–pyrite δ34S. Earth Planet Sci Lett 363:144–155

    Article  Google Scholar 

  • Kaufman AJ, Knoll AH (1995) Neoproterozoic variations in C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res 73:27–49

    Article  Google Scholar 

  • Kaufman AJ, Jacobsen SB, Knoll AH (1993) The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet Sci Lett 120:409–430

    Article  Google Scholar 

  • Kovalevych VM, Marshall T, Peryt TM, Petrychenko Y, Zhukova SA (2006) Chemical composition of seawater in Neoproterozoic: results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia). Precambrian Res 144:39–51

    Article  Google Scholar 

  • Li DS, Liang DG, Jia CZ, Wang G, Wu QZ, He DF (1996) Hydrocarbon accumulations in the Tarim Basin, China. AAPG Bull 80:1587–1603

    Google Scholar 

  • Li M, Wang TG, Lillis PG, Wang C, Shi S (2012) The significance of 24-norcholestanes, triaromatic steroids and dinosteroids in oils and Cambria − Ordovician source rocks from the cratonic region of the Tarim Basin, NW China. Appl Geochem 27:1643–1654

    Article  Google Scholar 

  • Li S, Amrani A, Pang X, Yang H, Said-Ahmad W, Zhang B, Pang Q (2015) Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin. Org Geochem 78:1–22

    Article  Google Scholar 

  • Lin YT, He JQ (2003) Rock salt resources in Sichuan Province. Acta Geol Sichuan 23:154–159 (in Chinese with English abstract)

    Google Scholar 

  • Lioyd RM (1968) Oxygen isotope behavior in the sulfate-water system. J Geophys Res Atmos 73:6099–6110

    Article  Google Scholar 

  • Liu L (2011) Exploration potential of middle Cambrian subsalt formations in marine origon formation area, Jianghan Basin. Mar Orig Petrol Geol 16:26–32 (In Chinese with English abstract)

    Google Scholar 

  • Liu MW, Song WQ, Xu JQ, Zhang YJ, Xu LJ (2003) Geological characteristics of Cambrian Gypsum deposit in Longquan of Yiyuan County. Geol Shandong 19:39–43 (in Chinese with English abstract)

    Google Scholar 

  • Longinelli A (1989) Oxygen-18 and sulphur-34 in dissolved oceanic sulphate and phosphate. In: Fritz P, Fontes JC (eds), Handbook of environmental isotope geochemistry. Elsevier, Amsterdam, vol 3, pp 219–255

  • Lowenstein TK, Li JR, Brown C, Roberts SM, Ku TL, Luo S, Yang W (1999) 200 k.y. paleoclimate record from Death Valley salt core. Geology 27:3–6

    Article  Google Scholar 

  • Lowenstein TK, Timofeeff MN, Brennan ST, Hardie LA, Demicco RV (2001) Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294:1086–1088

    Article  Google Scholar 

  • Lu SN, Li HK, Chen ZH (2003) Characteristics, sequence and age of Neoproterozoic thermo-tectonic events between Tarim and Yangtz blocks-a hypothesis of Yangzi-Tarim connection. Earth Sci Front 10:321–326 (in Chinese with English abstract)

    Google Scholar 

  • Margaritz M, Kirschvink JL, Latham AJ, Zhuravlev AY, Rozanov AY (1991) Precambrian/Cambrian boundary problem: carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology 19:847–850

    Article  Google Scholar 

  • Meng FW, Ni P, Schiffbauer JD, Yuan XL, Zhou CM, Wang YG, Xia ML (2011) Ediacaran seawater temperature: evidence from inclusions of Sinian halite. Precambrian Res 184:63–69

    Article  Google Scholar 

  • Meng FW, Ni P, Yuan XL, Zhou CM, Yang CH, Li YP (2013) Choosing the best ancient analogue for projected future temperatures: a case using data from fluid inclusions of middle-late Eocene halites. J Asian Earth Sci 67–68:46–50

    Article  Google Scholar 

  • Meng FW, Galamay AR, Yang CH, Li YP, Zhuo QG (2014) The major composition of a middle–late Eocene salt lake in the Yunying depression of Jianghan Basin of Middle China based on analyses of fluid inclusions in halite. J Asian Earth Sci 85:97–105

    Article  Google Scholar 

  • Morris SC (1993) The fossil record and the early evolution of the Metazoa. Nature 361:219–225

    Article  Google Scholar 

  • Nie S (1991) Paleoclimatic and paleomagnetic constraints on the Paleozoic reconstruction of South China, North China and Tarim. Tectonophysics 196:279–305

    Article  Google Scholar 

  • Nielsen H (1989) Local and global aspects of the sulphur isotope age curve of oceanic sulphate. In: Brimblecombe P, Lein AY (eds) Evolution of the global biogeochemical sulphur cycle. Wiley, New York, pp 57–64

    Google Scholar 

  • Peryt TM, Hałas S, Kovalevych VM, Petrychenko OY, Dzhinoridze NM (2005) The sulphur and oxygen isotopic composition of Lower Cambrian anhydrites in East Siberia. Geol Q 49:235–242

    Google Scholar 

  • Petrychenko OY, Peryt TM, Chechel EI (2005) Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites. Chem Geol 219:149–161

    Article  Google Scholar 

  • Porter SM (2007) Seawater chemistry and early carbonate biomineralization. Science 316:1302

    Article  Google Scholar 

  • Raab M, Spiro B (1991) Sulfur isotope variations during seawater evaporation with fractional crystallization. Chem Geol 86:323–333

    Google Scholar 

  • Sakai H, Krouse HR (1971) Elimination of memory effect in 18O-16O determinations in sulfates. Earth Planet Sci Lett 11:369–373

    Article  Google Scholar 

  • Saltzman M, Thomas E (2012) Carbon isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale, vol 1. Elsevier, Amsterdam, pp 207–232

    Chapter  Google Scholar 

  • Saltzman MR, Edwards CT, Adrain JM, Westrop SR (2015) Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. Geology 43:807–810

    Article  Google Scholar 

  • Sawaki Y, Ohno T, Tahata M, Komiya T, Hirata T, Maruyama S, Windley BF, Han J, Shu DG, Li Y (2010) The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Res 176:46–64

    Article  Google Scholar 

  • Schiffbauer JD, Huntley JW, Fike DA, Jeffrey MJ, Gregg JM, Shelton KL. Decoupling biogeochemical records, extinction, and environmental change during the Cambrian SPICE event. Sci Adv (In press)

  • Schiffbauer JD, Huntley JW, O’Neil GR, Darroch SAF, Laflamme M, Cai Y (2016) The Latest Ediacaran Wormworld Fauna: setting the ecological stage for the Cambrian Explosion. GSA Today 26:4–11

    Article  Google Scholar 

  • Shields GA, Strauss H, Howe SS, Siegmund H (1999) Sulphur isotope composition of sedimentary phosphorites from the basal Cambrian of China: implications for Neoproterozoic-Cambrian biogeochemical cycling. J Geol Soc Lond 156:943–956

    Article  Google Scholar 

  • Shu DG, Luo HL, Conway Morris S, Zhang XL, Hu SX, Chen L, Han J, Zhu M, Li Y, Chen LZ (1999) Lower Cambrian vertebrates from south China. Nature 402:42–46

    Article  Google Scholar 

  • Solomon M, Rafter TA, Dunham KC (1971) Sulphur and oxygen isotope studies in the northern Pennines in relation to ore genesis. Trans Inst Mining Metall 80:259–275

    Google Scholar 

  • Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19

    Article  Google Scholar 

  • Strauss H (1993) The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record. Precambrian Res 63:225–246

    Article  Google Scholar 

  • Strauss H (1997) The isotopic composition of sedimentary sulfur through time. Palaeogeogr Palaeoclimatol Palaeoecol 132:97–118

    Article  Google Scholar 

  • Strauss H, Banerjee DM, Kumar V (2001) The sulfur isotopic composition of Neoproterozoic to early Cambrian seawater–evidence from the cyclic Hanseran evaporites, NW India. Chem Geol 175:17–28

    Article  Google Scholar 

  • Sun Y, Xu S, Lu H, Cuai P (2003) Source facies of the Paleozoic petroleum systems in the Tabei uplift, Tarim Basin, NW China: implications from aryl isoprenoids in crude oils. Org Geochem 34:629–634

    Article  Google Scholar 

  • Tang L, Qiu H, Yun L, Yang Y, Xie D, Li M, Jiang H (2014) Poly-phase reformlate-stage finalization composite tectonics and strategic area selection of oil and gas resources in Tarim basin, NW China. J Jilin Univ (Earth Sci Ed) 44:1–14 (In Chinese with English abstract)

    Google Scholar 

  • Thode HG, Monster J (eds) (1965) Sulfur isotope geochemistry of petroleum, evaporites and ancient seas. In: Fluids in subsurface environments: a symposium. American Association of Petroleum Geologists Memoir 4, pp 367–372

  • Thode HG, Monster J, Dunford HB (1961) Sulphur isotope geochemistry. Geochim Cosmochim Acta 25:159–174

    Article  Google Scholar 

  • Wang SL, Zheng MP, Liu XF, Niu XS, Chen WX, Su K (2013) Distribution of Cambrian salt-bearing basins in China and its significance for halite and potash finding. J Earth Sci 24:212–233

    Article  Google Scholar 

  • Wang ZM, Xie HW, Chen YQ, Qi YM, Zhang K (2014) Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin. China Pet Explor 19:1–13 (In Chinese with English abstract)

    Google Scholar 

  • Wang DW, Wang TG, Li MJ, Song DF, Shi SB (2016) The distribution of chrysene and methylchrysenes in oils from wells ZS5 and ZS1 in the Tazhong Uplift and its implications in oil-to-source correlation. Geochimica 45:45–461 (In Chinese with English abstract)

    Google Scholar 

  • Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin, pp 1–1036

    Book  Google Scholar 

  • Warren JK (2008) Salt dynamics. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins. Springer, Berlin, pp 249–276

    Google Scholar 

  • Warren JK (2010) Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Sci Rev 98:217–268

    Article  Google Scholar 

  • Wille M, Nägler TF, Lehmann B, Schröde S, Kramers JD (2008) Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature 453:767–769

    Article  Google Scholar 

  • Wu CQ, Cheng Y, Zhang ZW, Xiao JF, Fu YZ, Shao SX, Zheng CF, Yao JH (2015) Geological implications of ultra-high δ34S values of pyrite in manganese deposits of Nanhua Period in eastern Guizhou and adjacent areas, China. Geochimica 44:213–224 (In Chinese with English abstract)

    Google Scholar 

  • Yao JL, Wei XS, Zhang DF, Wang SF, Huang DJ, Ji HK (2010) Sedimentary microfacies of anhydrite concretion dolomite rock: take Majiagou Formation Ma5 31 layer in the eastern Ordos Basin as an example. Pet Explor Dev 37:690–695 (in Chinese with English abstract)

    Google Scholar 

  • Yong ZQ, Luo ZL, Liu SG, Cui JW (2007) Importance of reconstruction of Tarim-Yangtze Paleocontiment model to oil-gas exploration. Acta Petrolei Sin 28:1–6 (In Chinese with English abstract)

    Article  Google Scholar 

  • Zhang WZ (2000) Neoproterozoic global supercontinent collision and breakup and the positions of Chneses Blocks; evidences from paleomagnetic data. Progress Precambrian Res 23:179–189 (In Chinese)

    Google Scholar 

  • Zhang JT, Hu WX, Qian YX, Wang XL, Gao J, Zhu JQ, Li Q, Xie XM (2009) Formation of saddle dolomites in Upper Cambrian carbonates, western Tarim Basin (northwest China): implications for fault-related fluid flow. Mar Petrol Geol 26:1428–1440

    Article  Google Scholar 

  • Zhang ZL, Meng FW, Cai XY, Ni P, Li L, Ou ZJ (2013) Middle Cambrian halite chlorine isotope in the Bachu uplift of Tarim block, Xinjiang, northwestern China. Acta Micropalaeon Sin 30:239–243. (In Chinese with English abstract)

    Google Scholar 

  • Zhao ZJ, Zhang YB, Pan M, Wu XN, Pan WQ (2010) Cambrian sequence stratigraphic framework in Tarim Basin. Geol Rev 56:609–620 (In Chinese with English abstract)

    Google Scholar 

  • Zheng B, Gao RX (2006) Characteristics of carbon and sulfur isotopes in crude oil and oil source correlation in the Tarim basin. Pet Geol Exp 28:281–285 (In Chinese with English abstract)

    Google Scholar 

  • Zheng JF, Shen AJ, Liu YF, Chen YQ (2013) Main controlling factors and characteristics of Cambrian dolomite reservoirs related to evaporite in Tarim Basin. Acta Sedimentol Sin 31:89–98 (In Chinese with English abstract)

    Google Scholar 

  • Zhou ZY, Lin HL (1995) The stratigraphy, paleogeography, plate tectonics in the northwest regions of China. Nanjing University Press, Nanjing, pp 1–29 (In Chinese)

    Google Scholar 

  • Zhou ZY, Zhen YY, Peng SC, Zhu XJ (2008) Notes on Cambrian Trilobite biogeography of China. Acta Palaeontol Sin 47:385–392 (In Chinese with English abstract)

    Google Scholar 

  • Zhuo QG, Meng FW, Song Y, Yang HJ, Li Y, Ni P (2014) Hydrocarbon migration through salt: evidence from Kelasu tectonic zone of Kuqa foreland basin in China. Carbonate Evaporites 29:291–297

    Article  Google Scholar 

  • Ziegler AM, Eshel G, Rees PM, Rothfus TA, Rowley DB, Sunderlin D (2003) Tracing the tropics across land and sea: permian to present. Lethaia 36:227–254

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (Nos: 41473039 and 4151101015) and Bureau of International Co-operation, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-wei Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Fw., Zhang, Zl., Schiffbauer, J.D. et al. The Yudomski event and subsequent decline: new evidence from δ34S data of lower and middle Cambrian evaporites in the Tarim Basin, western China. Carbonates Evaporites 34, 1117–1129 (2019). https://doi.org/10.1007/s13146-017-0407-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-017-0407-9

Keywords

Navigation