Skip to main content
Log in

Effects of mountain uplift on global monsoon precipitation

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study explores the role of the global mountain uplift (MU), which occurred during the middle and late Cenozoic, in modulating global monsoon precipitation using the Meteorological Research Institute atmosphere-ocean coupled model experiments. First, the MU causes changes in the annual mean of major monsoon precipitation. Although the annual mean precipitation over the entire globe remains about the same from the no-mountain experiment (MU0) to the realistic MU (MU1), that over the Asian-Australian monsoon region and Americas increases by about 16% and 9%, respectively. Second, the MU plays an essential role in advancing seasonal march, and summer-monsoon onset, especially in the Northern Hemisphere, by shaping pre-monsoon circulation. The rainy seasons are lengthened as a result of the earlier onset of the summer monsoon since the monsoon retreat is not sensitive to the MU. The East Asian monsoon is a unique consequence of the MU, while other monsoons are attributed primarily to land-sea distribution. Third, the strength of the global monsoon is shown to be substantially affected by the MU. In particular, the second annual cycle (AC) mode of global precipitation (the spring-autumn asymmetry mode) is more sensitive to the progressive MU than the first mode of the AC (the solstice mode), suggesting that the MU may have a greater impact during transition seasons than solstice seasons. Finally, the MU strongly modulates interannual variation in global monsoon precipitation in relation to El Niño and Southern Oscillation (ENSO). The Progressive MU changes not only the spatial distribution but also the periodicity of the first and second AC mode of global precipitation on interannual timescale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, M., A. Kitoh, and T. Yasunari, 2003: An evolution of the Asian summer monsoon associated with mountain uplift-simulation with the MRI atmosphere-ocean coupled GCM. J. Meteor. Soc. Japan, 71, 909–933.

    Article  Google Scholar 

  • Abe, M., T. Yasunari, and A. Kitoh, 2004: Effects of large-scale orography on the coupled atmosphere-ocean system in the tropical Indian and Pacific Oceans in boreal summer. J. Meteor. Soc. Japan, 82, 745–759.

    Article  Google Scholar 

  • Abe, M., T. Yasunari, and A. Kitoh, 2005: Sensitivity of the central Asian climate to uplift of the Tibetan Plateau in the coupled climate model (MRI-CGCM1). Isl. Arc, 14, 378–388.

    Article  Google Scholar 

  • Barron, E. J., 1985: Explanations of the tertiary global cooling trend. Palaeogeogr. Palaeocl., 50, 45–61.

    Article  Google Scholar 

  • Barron, E. J., C. G. A. Harrison, J. L. Sloan III, and W. W. Hay, 1981: 1980 million years ago to the present. Paleogeography, 74, 443–470.

    Google Scholar 

  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218–222.

    Article  Google Scholar 

  • Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude North Hemisphere dry climates. J. Climate, 5, 1181–1201.

    Article  Google Scholar 

  • Chang, C. P., Z. Wang, J. McBride, and C. H. Liu, 2005: AC of Southeast Asia-Maritime continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287–301.

    Article  Google Scholar 

  • Hanh, D. G., and S. Manabe, 1975: The role of mountains in the south Asian monsoon circulation. J. Atmos. Soc., 32, 1515–1541.

    Article  Google Scholar 

  • Jiang D., Z. Ding, H. Drange, and Y. Gao, 2008: Sensitivity of East Asian climate to the progressive uplift and expansion of the Tibetan Plateau under the Mid-Pliocene boundary condition. Adv. Atmos. Sci., 25, 709–722.

    Article  Google Scholar 

  • Kim, H.-J., and Coauthors, 2011: Global monsoon, El Niño, and their interannual linkage simulated by MIROC5 and the CMIP3 CGCMs. J. Climate, 24, 5604–5618.

    Article  Google Scholar 

  • Kitoh, A., 1997: Mountain uplift and surface temperature changes. Geophys. Res. Lett., 24, 185–188.

    Article  Google Scholar 

  • Kitoh, A., 2002: Effects of large-scale mountains on surface climate-a coupled ocean-atmospheric general circulation model study. J. Meteor. Soc. Japan, 80, 1165–1181.

    Article  Google Scholar 

  • Kitoh, A., 2004: Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphere-ocean GCM. J. Climate, 17, 783–802.

    Article  Google Scholar 

  • Kitoh, A., 2007: ENSO modulation by mountain uplift. Clim. Dynam., 28, 781–796.

    Article  Google Scholar 

  • Kitoh, A., T. Motoi, and O. Arakawa, 2010: Climate modeling study on mountain uplift and Asian monsoon evolution. In: P. D. Clift, R. Tada, and H. Zheng (eds) Monsoon Evolution and Tectonics-Climate Linkage in Asia, 293–301.

    Google Scholar 

  • Kutzbach, J. E., P. J. Guetter, W. F. Ruddiman, and W. L. Prell, 1989: Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West: Numerical experiment. J. Geophys. Res., 94, 18393–18407.

    Article  Google Scholar 

  • Lau, K. M., and P. H. Chan, 1983: Short-term climate variability and atmospheric teleconnections from satellite-observed outgoing longwave radiation. Part II: lagged correlations. J. Atmos. Sci., 40, 2751–2767.

    Article  Google Scholar 

  • Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Clim. Dynam., 42, 101–119.

    Article  Google Scholar 

  • Lee, J.-Y., B. Wang, K.-H. Seo, J.-S. Kug, Y.-S. Choi, Y. Kosaka, and K.-J. Ha, 2014: Future change of Northern Hemisphere summer tropicalextratropical teleconnection in CMIP5 models. J. Climate, 27, 3643–3664.

    Article  Google Scholar 

  • Lee, J.-Y., and Coauthors, 2010: How are seasonal prediction skills related to models’ performance on mean state and annual cycle?. Clim. Dynam., 35, 267–283.

    Article  Google Scholar 

  • Lee, S.-S., J.-Y. Lee, K.-J. Ha, B. Wang, A. Kitoh, Y. Kajikawa, and M. Abe, 2013: Role of Tibetan Plateau on climatological annual variation of mean atmospheric circulation and storm track activity. J. Climate, 26, 5270–5286.

    Article  Google Scholar 

  • Liu, J., B. Wang, Q. Ding, X. Kuang, W. Soon, and E. Zorita 2009: Centennial variations of the global monsoon precipitation in the last millennium: results from ECHO-G model. J. Climate, 22, 2356–2371.

    Article  Google Scholar 

  • Liu, J., B. Wang, S.-Y. Yim, J.-Y. Lee, J.-G. Jhun, and K.-J. Ha, 2012: What drives the global summer monsoon over the past millennium?. Clim. Dynam. 39, 1063–1072.

    Article  Google Scholar 

  • Liu, X., and Z. Y. Yin, 2002: Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr. Palaeocl., 183, 223–245.

    Article  Google Scholar 

  • Manabe, S., and T. B. Terpstra, 1974: The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31, 3–42.

    Article  Google Scholar 

  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115, 27–50.

    Article  Google Scholar 

  • Okajima, H., and S. P. Xie, 2007: Orographic effects on the northwestern Pacific monsoon: role of air-sea interaction. Geophys. Res. Lett., 34, L21708, doi:10.1090/2007GL032206.

  • Ose, T., 1998: Seasonal change of Asian summer monsoon circulation and its heat source. J. Meteor. Soc. Japan, 76, 1045–1063.

    Google Scholar 

  • Park, H.-S., S.-P. Xie, and S.-W. Son, 2013: Poleward stationary eddy heat transport by the Tibetan Plateau and equatorward shift of westerlies during Northern winter. J. Atmos. Sci., 70, 3288–3301.

    Article  Google Scholar 

  • Ruddiman, W. F., and M. E. Raymo, 1988: Northern Hemisphere climate regimes during the past 3 Ma: Possible tectonic connections. Philos. T. R. Soc. Lond. Ser. B, 318, 411–430.

    Article  Google Scholar 

  • Ruddiman, W. F., and J. E. Kutzbach, 1989: Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the American West. J. Geophys. Res., 94, 18409–18427.

    Article  Google Scholar 

  • Sepulchre, P., G. Ramstein, F. Fluteau, M. Schuster, J. J. Tiercelin, and M. Brunet, 2006: Tectonic uplift and eastern Africa aridification. Science, 313, 1419–1423.

    Article  Google Scholar 

  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854-1997). J. Climate, 17, 2466–2477.

    Article  Google Scholar 

  • Su, F., X. Duan, D. Chen, Z. Hao, and L. Cuo, 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 3187–3208.

    Article  Google Scholar 

  • Trenberth, K. E., and D. P. Stepaniak, 2004: The flow of energy through the earth’s climate system. Quart. J. Roy. Meteor. Soc., 130, Part B, 2677–2701.

    Article  Google Scholar 

  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13, 3969–3993.

    Article  Google Scholar 

  • Trenberth, K. E., J. W. Hurrell, and D. P. Stepaniak, 2006: The Asian Monsoon. The Asian monsoon: Global perspectives, Springer, 67–87.

    Book  Google Scholar 

  • Wang, B., and Q. Ding, 2008: The global monsoon: Major modes of annual variation in tropical precipitation and circulation. Dyn. Atmos. Oceans, 44, 65–183.

    Article  Google Scholar 

  • Wang, B., H.-J. Kim, K. Kikuchi, and A. Kitoh, 2011: Diagnostic metrics for evaluation of annual and diurnal cycles. Clim. Dynam., 37, 941–955.

    Article  Google Scholar 

  • Wang, B., J. Liu, H.-J. Kim, P. J. Webster, and S.-Y. Yim, 2012: Recent change of the global monsoon precipitation (1979–2008). Clim. Dynam., 39, 1123–1135.

    Article  Google Scholar 

  • Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoon: processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14451–14510.

    Article  Google Scholar 

  • Wu, G., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 770–789.

    Article  Google Scholar 

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    Article  Google Scholar 

  • Yasunari, T., K. Saito, and K. Takata, 2006: Relative roles of large-scale orography and land surface processes in the global hydroclimate. Part I: impacts on monsoon systems and the tropics. J. Hydrometeor., 7, 626–641.

    Article  Google Scholar 

  • Yukimoto, S., and Coauthors, 2001: The new Meteorological Research Institute coupled GCM (MRI-CGCM2)-model climate and variability. Pap. Meteorol. Geophys., 51, 47–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JY., Wang, B., Seo, KH. et al. Effects of mountain uplift on global monsoon precipitation. Asia-Pacific J Atmos Sci 51, 275–290 (2015). https://doi.org/10.1007/s13143-015-0077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-015-0077-2

Key words

Navigation