Skip to main content
Log in

Enhanced aerosol-cloud relationships in more stable and adiabatic clouds

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Modification of cloud microphysics and cloud albedo by cloud-active aerosol is generally identified and accepted, but the nature and magnitude of aerosol-cloud interactions are vaguely understood and thought to include a myriad of processes that vary regionally and confound the application of simple physical models of cloud-aerosol sensitivity. This paper presents observations demonstrating that cloud top stability through its regulation of mixing and vertical development is one of the critical mechanisms that regulate cloud response to cloud-active aerosol in some cloud systems. Strong above-cloud inversions are shown to buffer marine stratocumulus from the effects of mixing with drier, warmer inversion air. This buffering reduces the variability of the cloud liquid water path (LWP) and enables the clouds to remain nearly adiabatic. While weaker above-cloud inversions in continental stratocumulus promote variability in the LWP and sub-adiabatic LWPs, stronger inversions in marine stratocumulus enables a relatively adiabatic existence that increases the relationship of cloud microphysical alteration to cloud-active aerosol. This study has important implications for Geoengineering in that it demonstrates that cloud systems overlain by strong thermal inversions are more likely to respond predictably to intentional manipulation of the in-cloud concentration of cloud-active aerosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above the stratiform clouds on indirect aerosol climate forcing. Nature, 432, 1014–1017.

    Article  Google Scholar 

  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.

    Article  Google Scholar 

  • —, C. W. Fairall, D. W. Thomson, and A. B. White, 1990: Surfacebased remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 89–92.

    Article  Google Scholar 

  • Borg, L. A., and R. Bennartz, 2007: Vertical structure of stratiform marine boundary layer clouds and its impact on cloud albedo. Geophys. Res. Lett., 34, L05807, doi: 10.1029/ 2006GL02871389.

    Article  Google Scholar 

  • Chen, R., R. Wood, Z. Li, R. Ferraro, and F. L. Chang, 2008: Studying the vertical variation of cloud droplet effective radius using ship and spaceborne remote sensing data. J. Geophys. Res., 113, doi:10.1029/ 2007JD009596.

    Google Scholar 

  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteorol., 39, 645–665.

    Article  Google Scholar 

  • Feingold, G., W. Eberhard, D. E. Lane, and M. Previdi, 2003: First measurements of the Twomey effect using ground-based remote sensors. Geophys. Res. Lett., 1287, doi:10.1029/2002GL016633.

    Google Scholar 

  • —, R. Furrer, P. Pelewskie, L. A. Remer, Q. Min, and H. Jonsson, 2006: Aerosol indirect effect studies at Southern Great Plains during the May 2003 intensive operational period. J. Geophys. Res., 111, doi:10.1029/2004JD005648.

    Google Scholar 

  • Guo, H. Y. Liu, P. H. Daum, X. Zeng, X. Li, and W.-K. Tao, 2007: Investigation of the first and second aerosol indirect effects using data from the May 2003 Intensive Operational Period at the Southern Great Plains. J. Geophys. Res., 112, doi:10.1029,/2006/JD007173.

  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), 2007: Climate Change 2007: The physical basis, Summary for Policymakers.

  • Kim, B.-G., S. E. Schwartz, M. A. Miller, and Q. Min, 2003: Effective radius of cloud droplets by ground-based remote sensing: Relationship to aerosol. J. Geophys. Res., 108, doi:10.1029 /2003JD003721.

    Google Scholar 

  • —, S. A. Klein, and J. R. Norris, 2005: Continental liquid water cloud variability and its parameterization using ARM data. J. Geophys. Res., 110, doi:10.1029/2004JD005122.

    Google Scholar 

  • —, M. A. Miller, S. E. Schwartz, Y. Liu, and Q. Min, 2008: The role of adiabaticity in the aerosol first indirect effect. J. Geophys. Res., 113, doi:10.1029/2007JD008961.

  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 1587–1606.

    Article  Google Scholar 

  • Latham, J., 1990: Control of global warming? Nature, 347, doi:10.1038/347339b0.

  • Lee, S. S., J. E. Penner, and S. M. Saleeby, 2009: Aerosol effects on liquidwater path of thin stratocumulus clouds. J. Geophys. Res., 114, doi:10.1029/2008JD010513.

    Google Scholar 

  • Liljegren, J. C., E. E. Clothiaux, G. G. Mace, S. Kato, and X. Dong, 2001: A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res., 106, 14485–14500.

    Article  Google Scholar 

  • Liu, Y., P. H. Daum, and S. S. Yum, 2006: Analytical expression for the relative dispersion of the cloud droplet size distribution. Geophys. Res. Lett., 33, doi:10.1029/2005GL024502.

    Google Scholar 

  • Lu, M.-L., and J. H. Seinfeld, 2005: Study of the aerosol indirect effect by large-eddy simulation of marine stratocumulus. J. Atmos. Sci., 62, 3909–3932.

    Article  Google Scholar 

  • —, G. Feingold, H. H. Jonsson, P. Y. Chuang, H. Gates, R. C. Flagan, and J. H. Seinfeld, 2008: Aerosol-cloud relationships in continental shallow cumulus. J. Geophys. Res., 113, doi:10.1029/2007JD009354.

    Google Scholar 

  • Matsui, T., H. Masunaga, S. M. Kreidenweis, R. A. Pielke Sr., W.-K. Tao, M. Chin, and Y. J. Kaufman, 2006: Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle. J. Geophys. Res., 111, doi:10.1029/ 2005JD006097.

  • McComiskey, A., G. Feingold, A. S. Frisch, D. D. Turner, M. A. Miller, J. C. Chiu, Q. Min, and J. A. Ogren, 2009: An assessment of aerosolcloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res., 114, doi:10.1029/2008JD011006.

  • Min, Q., and L. C. Harrison, 1996: Cloud properties derived from surface MFRSR measurements and comparison with GOES results at the ARM SGP site. Geophys. Res. Lett., 23, 1641–1644.

    Article  Google Scholar 

  • —, —, and E. Clothiaux, 2001: Joint statistics of photon path length and cloud optical depth: case studies. J. Geophys. Res., 106, 7375–7386.

    Article  Google Scholar 

  • Shao, H., and G. Liu, 2009: A critical examination of the observed first aerosol indirect effect. J. Atmos. Sci., 66, 1018–1032.

    Article  Google Scholar 

  • Sheridan, P. J., D. J. Delene, and J. A. Ogren, 2001: Four year of continuous surface aerosol measurements from the Department of Energy’s Atmospheric Radiation Measurement program Southern Great Plains cloud and Radiation testbed site. J. Geophys. Res., 106, 20735–20747.

    Article  Google Scholar 

  • Sorooshian, A., G. Feingold, M. D. Lebsock, H. Jiang, and G. L. Stephens, 2010: Deconstructing the precipitation susceptibility construct: Improving methodology for aerosol-cloud precipitation studies. J. Geophys. Res., 115, doi:10.1029/2009JD013426.

    Google Scholar 

  • Stephens, G. L., 1984: The parameterization of radiation for numerical weather prediction and climate models. Mon. Wea. Rev., 112, 826–967.

    Article  Google Scholar 

  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607–613.

    Article  Google Scholar 

  • Twohy, C., M. D. Petters, J. R. Snider, B. Stevens, W. Tahnk, M. Wetzel, L. Russell, and F. Burnet, 2005: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: droplet number, size, liquid water path, and radiative impact. J. Geophys. Res., 110, doi:10.1029/2004JD005116.

  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 1251–1256.

    Article  Google Scholar 

  • Wood, R., S. Irons, and P. R. Jonas, 2002: How important is the spectral ripening effect in stratiform boundary layer clouds? Studies using simple trajectory analysis. J. Atmos. Sci., 59, 2681–2693.

    Article  Google Scholar 

  • —, K. K. Comstock, C. S. Bretherton, C. Cornish, J. Tomlinson, D. R. Collins, and C. Fairall, 2008: Open cellular structure in marine stratocumulus sheets. J. Geophys. Res., 113, doi:10.1029/2007JD009371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Gon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YJ., Kim, BG., Miller, M. et al. Enhanced aerosol-cloud relationships in more stable and adiabatic clouds. Asia-Pacific J Atmos Sci 48, 283–293 (2012). https://doi.org/10.1007/s13143-012-0028-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-012-0028-0

Key words

Navigation