Skip to main content
Log in

Using compensatory base change analysis of internal transcribed spacer 2 secondary structures to identify three new species in Paramacrobiotus (Tardigrada)

  • Original ARticle
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Species within the tardigrade genus Paramacrobiotus could be distinguished via an analysis of internal transcribed spacer 2 (ITS2) secondary structures. Sequences of P. richtersi and four populations previously treated under provisional names (Paramacrobiotus ‘richtersi group’ 1 to 4) from different continents were determined and annotated, and their secondary structures were predicted. A tree based on a combined sequence-structure alignment was reconstructed by Neighbor-Joining. The topology obtained is consistent with a tree based on a distance matrix of compensatory base changes (CBCs) between all ITS2 sequence-structure pairs in the global multiple alignment. The CBC analysis, together with 18S rDNA sequences, physiological, biochemical and biophysical data identified three species new to science that are morphologically indistinguishable from P. richtersi. These are formally described under the names Paramacrobiotus fairbanksi sp. nov., P. kenianus sp. nov., and P. palaui sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, A. W. (2000). The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist, 151, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, A. W. (2003). ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics, 19, 370–375.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, A. W. (2007). Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Research, 35, 3322–3329.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, A. W. (2009). Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Molecular Phylogenetics and Evolution, 50, 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, A. W., & Vacquier, V. D. (2002). Exploring the phylogenetic utility of ITS sequences for animals: a test case for abalone (Haliotis). Journal of Molecular Evolution, 54, 246–257.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Fenchel, T., & Finlay, B. J. (2004). The ubiquity of small species: patterns of local and global diversity. Bioscience Biotechnology and Biochemistry, 54, 777–784.

    Google Scholar 

  • Friedrich, J., Dandekar, T., Wolf, M., & Müller, T. (2005). ProfDist: a tool for the construction of large phylogenetic trees based on profile distances. Bioinformatics, 21, 2108–2109.

    Article  CAS  PubMed  Google Scholar 

  • Garey, J. R., Nelson, D. R., Mackey, L. Y., & Li, J. (1999). Tardigrade phylogeny: congruency of morphological and molecular evidence. Zoologischer Anzeiger, 238, 205–210.

    Google Scholar 

  • Gascuel, O. (1997). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution, 14, 685–695.

    CAS  PubMed  Google Scholar 

  • Goeze, J. A. E. (1773). Herrn Karl Bonnets Abhandlungen aus der Insektologie aus d. Franz. übers. u. mit einigen Zusätzen hrsg. v. Joh. August Ephraim Goeze. Halle: Gebauer.

    Google Scholar 

  • Guidetti, R., & Bertolani, R. (2001). Phylogenetic relationships in the Macrobiotidae (Tardigrada: Eutardigrada: Parachela). Zoologischer Anzeiger, 240, 371–376.

    Article  Google Scholar 

  • Guidetti, R., & Bertolani, R. (2005). Tardigrade taxonomy: an updated check list of the taxa and a list of characters for their identification. Zootaxa, 845, 1–46.

    Google Scholar 

  • Guidetti, R., Gandolfi, A., Rossi, V., & Bertolani, R. (2005). Phylogenetic analysis of Macrobiotidae (Eutardigrada, Parachela): a combined morphological and molecular approach. Zoologica Scripta, 34, 235–244.

    Article  Google Scholar 

  • Guidetti, R., Colavita, C., Altiero, T., Bertolani, R., & Rebecchi, L. (2007). Energy allocation in two species of Eutardigrada. Journal of Limnology, 66(Supplement 1), 111–118.

    Google Scholar 

  • Guidetti, R., Schill, R. O., Bertolani, R., Dandekar, T., & Wolf, M. (2009). New molecular data for tardigrade phylogeny, with the erection of Paramacrobiotus gen. nov. Journal of Zoological Systematics and Evolutionary Research, 47, 315–321.

    Article  Google Scholar 

  • Guil, N., & Giribet, G. (2009). Fine scale population structure in the Echiniscus blumi-canadensis series (Heterotardigrada, Tardigrada) in an Iberian mountain range—when morphology fails to explain genetic structure. Molecular Phylogenetics and Evolution, 51, 606–613.

    Article  CAS  PubMed  Google Scholar 

  • Gutell, R. R., Larsen, N., & Woese, C. R. (1994). Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiological Reviews, 58, 10–26.

    CAS  PubMed  Google Scholar 

  • Hengherr, S., Heyer, A. G., Kohler, H. R., & Schill, R. O. (2008). Trehalose and anhydrobiosis in tardigrades—evidence for divergence in responses to dehydration. FEBS Journal, 275, 281–288.

    Article  CAS  PubMed  Google Scholar 

  • Hengherr, S., Worland, M. R., Reuner, A., Brümmer, F., & Schill, R. O. (2009a). High-temperature tolerance in anhydrobiotic tardigrades is limited by glass transition. Physiological and Biochemical Zoology, 82, 749–755.

    Article  CAS  PubMed  Google Scholar 

  • Hengherr, S., Worland, M. R., Reuner, A., Brümmer, F., & Schill, R. O. (2009b). Freeze tolerance, supercooling points and ice formation: comparative studies on the subzero temperature survival of limno-terrestrial tardigrades. Journal of Experimental Biology, 212, 802.

    Article  CAS  PubMed  Google Scholar 

  • Hohberg, K., & Greven, H. (2005). Retention of embryonated eggs in parthenogenetic Macrobiotus richtersi Murray, 1911 (Eutardigrada). Zoologischer Anzeiger, 243, 211–213.

    Article  Google Scholar 

  • Jørgensen, A. (2000). Cladistic analysis of the Echiniscidae Thulin, 1928 (Tardigrada: Heterotardigrada: Echiniscoidea). Steenstrupia, 25, 11–23.

    Google Scholar 

  • Jørgensen, A., & Kristensen, R. M. (2004). Molecular phylogeny of Tardigrada—investigation of the monophyly of Heterotardigrada. Molecular Phylogenetics and Evolution, 32, 666–670.

    Article  PubMed  Google Scholar 

  • Jørgensen, A., Møbjerg, N., & Kristensen, R. M. (2007). Molecular study of the tardigrade Echiniscus testudo (Echiniscidae) reveals low DNA sequence diversity over a large geographical area. Journal of Limnology, 66(Supplement 1), 77–83.

    Google Scholar 

  • Keller, A., Schleicher, T., Schultz, J., Müller, T., Dandekar, T., & Wolf, M. (2009). 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene, 430, 50–57.

    Article  CAS  PubMed  Google Scholar 

  • Keller, A., Förster, F., Müller, T., Dandekar, T., Schultz, J., & Wolf, M. (2010). Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biology Direct, 5, 4.

    Article  PubMed  Google Scholar 

  • Koetschan, C., Förster, F., Keller, A., Schleicher, T., Ruderisch, B., Schwarz, R., et al. (2010). The ITS2 Database III—sequences and structures for phylogeny. Nucleic Acids Research, 38(Database issue), D275–279.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen, R. M. (1987). Generic revision of the Echiniscidae (Heterotardigrada), with a discussion of the origin of the family. In R. Bertolani (Ed.), Biology of tardigrades, selected symposia and monographs U.Z.I (Vol. 1, pp. 261–335). Modena: Mucchi.

    Google Scholar 

  • Marcus, E. (1929). Tardigrada. HG Bronn’s Klassen und Ordnungen des Tierreichs 5, IV, 3. Leipzig: Akademische Verlagsgesellschaft.

    Google Scholar 

  • Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., & Turner, D. H. (2004). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences of the United States of America, 101, 7287–7292.

    Article  CAS  PubMed  Google Scholar 

  • McInnes, S. J., & Pugh, P. J. A. (2007). An attempt to revisit the global biogeography of limno-terrestrial Tardigrada. Journal of Limnology, 66(Supplement 1), 90–96.

    Google Scholar 

  • Møbjerg, N., Jørgensen, A., Eibye-Jacobsen, J., Agerlin Halberg, K., Persson, D., & Kristensen, R. M. (2007). New records on cyclomorphosis in the marine eutardigrade Halobiotus crispae (Eutardigrada: Hypsibiidae). Journal of Limnology, 66(Supplement 1), 132–140.

    Google Scholar 

  • Müller, T., Philippi, N., Dandekar, T., Schultz, J., & Wolf, M. (2007). Distinguishing species. RNA, 13, 1469–1472.

    Article  PubMed  Google Scholar 

  • Nelson, D. R. (2002). Current status of the Tardigrada: evolution and ecology. Integrative and Comparative Biology, 42, 652–659.

    Article  Google Scholar 

  • Nichols, P. B., Nelson, D. R., & Garey, J. R. (2006). A family level analysis of tardigrade phylogeny. Hydrobiologia, 558, 53–60.

    Article  Google Scholar 

  • Pilato, G. (1981). Analisi di nuovi caratteri nello studio degli Eutardigradi. Animalia, 8, 51–57.

    Google Scholar 

  • Ramazzotti, G., & Maucci, W. (1983). II phylum Tardigrada. Memorie dell’Istituto Italiano di Idrobiologia, 41, 1–1012.

    Google Scholar 

  • Regier, J. C., Shultz, J. W., Kambic, R. E., & Nelson, D. R. (2004). Robust support for tardigrade clades and their ages from three protein-coding nuclear genes. Invertebrate Biology, 123, 93–100.

    Article  Google Scholar 

  • Schill, R. O. (2007). Comparison of different protocols for DNA preparation and PCR amplification of mitochondrial genes of tardigrades. Journal of Limnology, 66(Supplement 1), 164–170.

    Google Scholar 

  • Schmitt, S., Hentschel, U., Zea, S., Dandekar, T., & Wolf, M. (2005). ITS-2 and 18S rRNA gene phylogeny of Aplysinidae (Verongida, Demospongiae). Journal of Molecular Evolution, 60, 327–336.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, J., & Wolf, M. (2009). ITS2 sequence-structure analysis in phylogenetics: a how-to manual for molecular systematics. Molecular Phylogenetics and Evolution, 52, 520–523.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, J., Maisel, S., Gerlach, D., Müller, T., & Wolf, M. (2005). A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA, 11, 361–364.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, J., Müller, T., Achtziger, M., Seibel, P. N., Dandekar, T., & Wolf, M. (2006). The internal transcribed spacer 2 database—a web server for (not only) low level phylogenetic analyses. Nucleic Acids Research, 34(Web Server issue), W704–707.

    Article  CAS  PubMed  Google Scholar 

  • Seibel, P. N., Müller, T., Dandekar, T., Schultz, J., & Wolf, M. (2006). 4SALE—a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics, 7, 498.

    Article  PubMed  Google Scholar 

  • Seibel, P. N., Müller, T., Dandekar, T., & Wolf, M. (2008). Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Research Notes, 1, 91.

    Article  PubMed  Google Scholar 

  • Selig, C., Wolf, M., Müller, T., Dandekar, T., & Schultz, J. (2008). The ITS2 Database II: homology modelling RNA structure for molecular systematics. Nucleic Acids Research, 36(Database issue), D377–380.

    CAS  PubMed  Google Scholar 

  • Spallanzani, L. (1776). Opuscoli di fisica animale e vegetabile. Modena: Societá Tipografica.

    Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic.

    Google Scholar 

  • Wolf, M., Achtziger, M., Schultz, J., Dandekar, T., & Müller, T. (2005a). Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA, 11, 1616–1623.

    Article  CAS  Google Scholar 

  • Wolf, M., Friedrich, J., Dandekar, T., & Müller, T. (2005b). CBCAnalyzer: inferring phylogenies based on compensatory base changes in RNA secondary structures. In Silico Biology, 5, 291–294.

    CAS  Google Scholar 

  • Wolf, M., Selig, C., Müller, T., Philippi, N., Dandekar, T., & Schultz, J. (2007). Placozoa: at least two. Biologia, 62, 641–645.

    Article  CAS  Google Scholar 

  • Wolf, M., Ruderisch, B., Dandekar, T., Schultz, J., & Müller, T. (2008). ProfDistS: (profile-) distance based phylogeny on sequence-structure alignments. Bioinformatics, 24, 2401–2402.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research was conducted with equipment made available by the project FUNCRYPTA (0313838A, 0313838B), funded by the German Federal Ministry of Education and Research (BMBF). We acknowledge the assistance of Eva Roth and Steffen Hengherr for managing the tardigrade cultures, of Inge Polle in the molecular work, and of Andy Reuner for the morphometric measurements (all University of Stuttgart, Germany). Furthermore, we cordially acknowledge Alexander Keller (University of Würzburg, Germany) for valuable discussions, and Patrick Meister (University of Würzburg, Germany) and Eileen Clegg (Bodega Bay, California, USA) for final proofreading. The palauan tardigrade species could be collected courtesy of the Bureau of Agriculture, Koror, Republic of Palau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Wolf.

Additional information

Ralph O. Schill and Frank Förster have contributed equally to this work.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 133 kb)

Supplementary Table 2

(DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schill, R.O., Förster, F., Dandekar, T. et al. Using compensatory base change analysis of internal transcribed spacer 2 secondary structures to identify three new species in Paramacrobiotus (Tardigrada). Org Divers Evol 10, 287–296 (2010). https://doi.org/10.1007/s13127-010-0025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-010-0025-z

Keywords

Navigation