Skip to main content

Advertisement

Log in

Post-stroke DHA Treatment Protects Against Acute Ischemic Brain Injury by Skewing Macrophage Polarity Toward the M2 Phenotype

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Systemic docosahexaenoic acid (DHA) has been explored as a clinically feasible protectant in stroke models. However, the mechanism for DHA-afforded neuroprotection remains elusive. Transient middle cerebral artery occlusion (tMCAO) was induced for 1 h. DHA (i.p., 10 mg/kg) was administered immediately after reperfusion and repeated daily for 3 days. Stroke outcomes, systemic inflammatory status, and microglia/macrophage phenotypic alterations were assessed 3 days after stroke. Macrophage depletion was induced by clodronate liposomes injection. Primary macrophage cultures were used to evaluate the direct effect of DHA on macrophages. We demonstrated that post-stroke DHA injection efficiently reduced brain infarct and ameliorated neurological deficits 3 days after tMCAO. Systemic DHA treatment significantly inhibited immune cell infiltration (macrophages, neutrophils, T lymphocytes, and B lymphocytes) and promoted macrophage polarization toward an anti-inflammatory M2 phenotype in the ischemic brain. Meanwhile, systemic DHA administration inhibited the otherwise elevated pro-inflammatory factors in blood and shifted circulating macrophage polarity toward M2 phenotype after ischemic stroke. The numbers of circulating immune cells in blood and spleen, however, were equivalent between DHA- and vehicle-treated groups. The protective effects of DHA were macrophage-dependent, as macrophage depletion abolished DHA-afforded neuroprotection. In vitro studies confirmed that DHA suppressed production of chemokines and pro-inflammatory cytokines from macrophages under inflammatory stimulation. These data indicate that post-stroke DHA treatment ameliorated acute ischemic brain injury in a macrophage-dependent manner and DHA enhanced macrophage phenotypic shift toward an anti-inflammatory phenotype to reduced central and peripheral inflammation after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao H, Garton T, Keep RF, Hua Y, Xi G. Microglia/macrophage polarization after experimental intracerebral hemorrhage. Transl Stroke Res. 2015;6:407–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jiang X, Pu H, Hu X, Wei Z, Hong D, Zhang W, et al. A post-stroke therapeutic regimen with omega-3 polyunsaturated fatty acids that promotes white matter integrity and beneficial microglial responses after cerebral ischemia. Transl Stroke Res. 2016;7:548–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pu H, Jiang X, Hu X, Xia J, Hong D, Zhang W, et al. Delayed docosahexaenoic acid treatment combined with dietary supplementation of omega-3 fatty acids promotes long-term neurovascular restoration after ischemic stroke. Transl Stroke Res. 2016;7:521–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang M, Wang S, Mao L, Leak RK, Shi Y, Zhang W, et al. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J Neurosci. 2014;34:1903–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen S, Zhang H, Pu H, et al. n-3 PUFA supplementation benefits microglial responses to myelin pathology. Sci Rep. 2014;4:7458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hong SH, Belayev L, Khoutorova L, Obenaus A, Bazan NG. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. J Neurol Sci. 2014;338:135–41.

    Article  CAS  PubMed  Google Scholar 

  7. Hong SH, Khoutorova L, Bazan NG, Belayev L. Docosahexaenoic acid improves behavior and attenuates blood-brain barrier injury induced by focal cerebral ischemia in rats. Exp Transl Stroke Med. 2015;7:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berressem D, Koch K, Franke N, Klein J, Eckert GP. Intravenous treatment with a long-chain omega-3 lipid emulsion provides neuroprotection in a murine model of ischemic stroke - a pilot study. PLoS One. 2016;11:e167329.

    Article  CAS  Google Scholar 

  9. Kuda O. Bioactive metabolites of docosahexaenoic acid. Biochimie. 2017;136:12–20.

    Article  CAS  PubMed  Google Scholar 

  10. Talamonti E, Pauter AM, Asadi A, Fischer AW, Chiurchiù V, Jacobsson A. Impairment of systemic DHA synthesis affects macrophage plasticity and polarization: implications for DHA supplementation during inflammation. Cell Mol Life Sci. 2017;74:2815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. National Research Council (US). Guide for the care and use of laboratory animals. 8th ed. Washington (DC): National Academies Press (US); 2011.

  12. Stetler RA, Cao G, Gao Y, Zhang F, Wang S, Weng Z, et al. Hsp27 protects against ischemic brain injury via attenuation of a novel stress-response cascade upstream of mitochondrial cell death signaling. J Neurosci. 2008;28:13038–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adelson JD, Barreto GE, Xu L, Kim T, Brott BK, Ouyang YB, et al. Neuroprotection from stroke in the absence of MHCI or PirB. Neuron. 2012;73:1100–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang Y, Liu H, Zhang H, Ye Q, Wang J, Yang B, et al. ST2/IL-33-dependent microglial response limits acute ischemic brain injury. J Neurosci. 2017;37:4692–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, et al. Microglial and macrophage polarization-new prospects for brain repair. NAT REV NEUROL. 2015;11:56–64.

    Article  PubMed  Google Scholar 

  16. Solomon AC, Stout JC, Weaver M, Queller S, Tomusk A, Whitlock KB, et al. Ten-year rate of longitudinal change in neurocognitive and motor function in prediagnosis Huntington disease. Mov Disord. 2008;23:1830–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang Y, Liu H, Zhang H, Ye Q, Wang J, Yang B, et al. ST2/IL-33-dependent microglial response limits acute ischemic brain injury. J Neurosci. 2017;37:4692–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M, et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke. 2016;47:498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghasemi FS, Wang F, Sinclair AJ, Elliott G, Turchini GM. How does high DHA fish oil affect health? A systematic review of evidence. Crit Rev Food Sci Nutr. 2018:1–44.

  20. Wang J, Ye Q, Xu J, et al. DRalpha1-MOG-35-55 reduces permanent ischemic brain injury. Transl Stroke Res. 2017;8:284–93.

    Article  CAS  PubMed  Google Scholar 

  21. Fan X, Jiang Y, Yu Z, Liu Q, Guo S, Sun X, et al. Annexin A2 plus low-dose tissue plasminogen activator combination attenuates cerebrovascular dysfunction after focal embolic stroke of rats. Transl Stroke Res. 2017;8:549–59.

    Article  CAS  PubMed  Google Scholar 

  22. Shimamura N, Katagai T, Kakuta K, Matsuda N, Katayama K, Fujiwara N, et al. Rehabilitation and the neural network after stroke. Transl Stroke Res. 2017;8:507–14.

    Article  PubMed  Google Scholar 

  23. Yigitkanli K, Zheng Y, Pekcec A, Lo EH, van Leyen K. Increased 12/15-Lipoxygenase leads to widespread brain injury following global cerebral ischemia. Transl Stroke Res. 2017;8:194–202.

    Article  CAS  PubMed  Google Scholar 

  24. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43:3063–70.

    Article  CAS  PubMed  Google Scholar 

  25. Lin Y, Xu M, Wan J, Wen S, Sun J, Zhao H, et al. Docosahexaenoic acid attenuates hyperglycemia-enhanced hemorrhagic transformation after transient focal cerebral ischemia in rats. Neuroscience. 2015;301:471–9.

    Article  CAS  PubMed  Google Scholar 

  26. Belayev L, Khoutorova L, Atkins KD, Bazan NG. Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke. 2009;40:3121–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Belayev L, Khoutorova L, Atkins KD, Eady TN, Hong S, Lu Y, et al. Docosahexaenoic acid therapy of experimental ischemic stroke. Transl Stroke Res. 2011;2:33–41.

    Article  CAS  PubMed  Google Scholar 

  28. Chen J, Cui C, Yang X, Xu J, Venkat P, Zacharek A, et al. MiR-126 affects brain-heart interaction after cerebral ischemic stroke. Transl Stroke Res. 2017;8:374–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem. 2003;278:43807–17.

    Article  CAS  PubMed  Google Scholar 

  30. Li L, Tao Y, Tang J, Chen Q, Yang Y, Feng Z, et al. A cannabinoid receptor 2 agonist prevents thrombin-induced blood-brain barrier damage via the inhibition of microglial activation and matrix metalloproteinase expression in rats. Transl Stroke Res. 2015;6:467–77.

    Article  CAS  PubMed  Google Scholar 

  31. Ma Y, Li Y, Jiang L, Wang L, Jiang Z, Wang Y, et al. Macrophage depletion reduced brain injury following middle cerebral artery occlusion in mice. J Neuroinflammation. 2016;13:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmidt A, Strecker JK, Hucke S, Bruckmann NM, Herold M, Mack M, et al. Targeting different monocyte/macrophage subsets has no impact on outcome in experimental stroke. Stroke. 2017;48:1061–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kumamaru H, Saiwai H, Kobayakawa K, et al. Liposomal clodronate selectively eliminates microglia from primary astrocyte cultures. J Neuroinflammation. 2012;9:116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee JC, Seong J, Kim SH, Lee SJ, Cho YJ, An J, et al. Replacement of microglial cells using clodronate liposome and bone marrow transplantation in the central nervous system of SOD1(G93A) transgenic mice as an in vivo model of amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2012;418:359–65.

    Article  CAS  PubMed  Google Scholar 

  35. Gliem M, Schwaninger M, Jander S. Protective features of peripheral monocytes/macrophages in stroke. Biochim Biophys Acta. 2016;1862:329–38.

    Article  CAS  PubMed  Google Scholar 

  36. Fang W, Zhai X, Han D, Xiong X, Wang T, Zeng X, et al. CCR2-dependent monocytes/macrophages exacerbate acute brain injury but promote functional recovery after ischemic stroke in mice. THERANOSTICS. 2018;8:3530–43.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shibui N, Kondo K. Long-term observation of patients with trauma of the lower anterior primary teeth. Shigaku. 1989;76:1556–68.

    CAS  PubMed  Google Scholar 

  38. Haitz KA, Anandasabapathy N. Docosahexaenoic acid alleviates atopic dermatitis in mice by generating T regulatory cells and m2 macrophages. J INVEST DERMATOL. 2015;135:1472–4.

    Article  CAS  PubMed  Google Scholar 

  39. Roy-O’Reilly M, Ritzel RM, Conway SE, et al. CCL11 (Eotaxin-1) levels predict long-term functional outcomes in patients following ischemic stroke. Transl Stroke Res. 2017;8:578–84.

    Article  CAS  PubMed  Google Scholar 

  40. Bang OY, Moon GJ, Kim DH, et al. Stroke induces mesenchymal stem cell migration to infarcted brain areas via CXCR4 and C-Met signaling. Transl Stroke Res. 2017;8:449–60.

    Article  CAS  Google Scholar 

  41. Xie L, Sun F, Wang J, Mao X, Xie L, Yang SH, et al. mTOR signaling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. J Immunol. 2014;192:6009–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. NAT REV NEUROSCI. 2014;15:300–12.

    Article  CAS  PubMed  Google Scholar 

  43. Sedgwick JD, Ford AL, Foulcher E, Airriess R. Central nervous system microglial cell activation and proliferation follows direct interaction with tissue-infiltrating T cell blasts. J Immunol. 1998;160:5320–30.

    CAS  PubMed  Google Scholar 

  44. Masliah E, Mallory M, Hansen L, Alford M, Albright T, Terry R, et al. Immunoreactivity of CD45, a protein phosphotyrosine phosphatase, in Alzheimer’s disease. Acta Neuropathol. 1991;83:12–20.

    Article  CAS  PubMed  Google Scholar 

  45. Garton T, Keep RF, Hua Y, Xi G. CD163, a hemoglobin/haptoglobin scavenger receptor, after intracerebral hemorrhage: functions in microglia/macrophages versus neurons. Transl Stroke Res. 2017;8:612–6.

    Article  CAS  PubMed  Google Scholar 

  46. Wu L, Walas S, Leung W, Sykes DB, Wu J, Lo EH, et al. Neuregulin1-beta decreases IL-1beta-induced neutrophil adhesion to human brain microvascular endothelial cells. Transl Stroke Res. 2015;6:116–24.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol. 2017;54:1874–86.

    Article  CAS  PubMed  Google Scholar 

  48. Shi Z, Ren H, Luo C, Yao X, Li P, He C, et al. Enriched endogenous omega-3 polyunsaturated fatty acids protect cortical neurons from experimental ischemic injury. Mol Neurobiol. 2016;53:6482–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Lisheng Peng for technical support with the tMCAO stroke model. We thank Michael Hezel for editorial assistance.

Funding

This work was supported by grant 81671178 from the National Natural Science Foundation of China and funding from the Natural Science Foundation of Guangdong Province (2017A030311013).

Author information

Authors and Affiliations

Authors

Contributions

WC designed and performed the experiments, collected and analyzed data, and drafted the manuscript. SL carried out immunostaining, imaging, and quantification and drafted the manuscript. MH and XS performed animal experiments and collected data. WQ contributed to the experimental design and the manuscript. SZ contributed to the experimental design and revised the manuscript. XH designed the experiment and critically revised the manuscript. ZL designed and supervised the study and critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhengqi Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

All animal experiments were approved by the Third Affiliated Hospital of Sun Yat-sen University and performed following the Guide for the Care and Use of Laboratory Animals (8th edition, 2011) [11].

Electronic Supplementary Material

ESM 1

(DOC 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Liu, S., Hu, M. et al. Post-stroke DHA Treatment Protects Against Acute Ischemic Brain Injury by Skewing Macrophage Polarity Toward the M2 Phenotype. Transl. Stroke Res. 9, 669–680 (2018). https://doi.org/10.1007/s12975-018-0662-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-018-0662-7

Keywords

Navigation