Skip to main content

Advertisement

Log in

Endovascular Biopsy: In Vivo Cerebral Aneurysm Endothelial Cell Sampling and Gene Expression Analysis

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

There is limited data describing endothelial cell (EC) gene expression between aneurysms and arteries partly because of risks associated with surgical tissue collection. Endovascular biopsy (EB) is a lower risk alternative to conventional surgical methods, though no such efforts have been attempted for aneurysms. We sought (1) to establish the feasibility of EB to isolate viable ECs by fluorescence-activated cell sorting (FACS), (2) to characterize the differences in gene expression by anatomic location and rupture status using single-cell qPCR, and (3) to demonstrate the utility of unsupervised clustering algorithms to identify cell subpopulations. EB was performed in 10 patients (5 ruptured, 5 non-ruptured). FACS was used to isolate the ECs and single-cell qPCR was used to quantify the expression of 48 genes. Linear mixed models and exploratory multilevel component analysis (MCA) and self-organizing maps (SOMs) were performed to identify possible subpopulations of cells. ECs were collected from all aneurysms and there were no adverse events. A total of 437 ECs was collected, 94 (22%) of which were aneurysmal cells and 319 (73%) demonstrated EC-specific gene expression. Ruptured aneurysm cells, relative controls, yielded a median p value of 0.40 with five genes (10%) with p values < 0.05. The five genes (TIE1, ENG, VEGFA, MMP2, and VWF) demonstrated uniformly reduced expression relative the remaining ECs. MCA and SOM analyses identified a population of outlying cells characterized by cell marker gene expression profiles different from endothelial cells. After removal of these cells, no cell clustering based on genetic co-expressivity was found to differentiate aneurysm cells from control cells. Endovascular sampling is a reliable method for cell collection for brain aneurysm gene analysis and may serve as a technique to further vascular molecular research. There is utility in combining mixed and clustering methods, despite no specific subpopulation identified in this trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EB:

Endovascular biopsy

FACS:

Fluorescence-activated cell sorting

EC:

Endothelial cell

qPCR:

Quantitative polymerase chain reaction

MCA:

Multilevel component analysis

SOMs:

Self-organizing maps

References

  1. Backes D, Vergouwen MD, Tiel Groenestege AT, Bor AS, Velthuis BK, Greving JP, et al. PHASES score for prediction of intracranial aneurysm growth. Stroke. 2015;46(5):1221–6.

    Article  PubMed  Google Scholar 

  2. Greving JP, Wermer MJ, Brown RD, Morita A, Juvela S, Yonekura M, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014;13(1):59–66.

    Article  PubMed  Google Scholar 

  3. Frösen J. Smooth muscle cells and the formation, degeneration, and rupture of saccular intracranial aneurysm wall—a review of current pathophysiological knowledge. Transl Stroke Res. 2014;5(3):347–56.

    Article  PubMed  Google Scholar 

  4. Marbacher S, Marjamaa J, Bradacova K, von Gunten M, Honkanen P, Abo-Ramadan U, et al. Loss of mural cells leads to wall degeneration, aneurysm growth, and eventual rupture in a rat aneurysm model. Stroke. 2014;45(1):248–54.

    Article  PubMed  Google Scholar 

  5. Frösen J, Tulamo R, Heikura T, Sammalkorpi S, Niemelä M, Hernesniemi J, et al. Lipid accumulation, lipid oxidation, and low plasma levels of acquired antibodies against oxidized lipids associate with degeneration and rupture of the intracranial aneurysm wall. Acta Neuropathol Commun. 2013;1(1):71.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Frösen J, Tulamo R, Paetau A, Laaksamo E, Korja M, Laakso A, et al. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol. 2012;123(6):773–86.

    Article  PubMed  Google Scholar 

  7. Frösen J, Marjamaa J, Myllärniemi M, Abo-Ramadan U, Tulamo R, Niemelä M, et al. Contribution of mural and bone marrow-derived neointimal cells to thrombus organization and wall remodeling in a microsurgical murine saccular aneurysm model. Neurosurgery. 2006;58(5):936–44. discussion −44

    Article  PubMed  Google Scholar 

  8. Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, et al. Growth factor receptor expression and remodeling of saccular cerebral artery aneurysm walls: implications for biological therapy preventing rupture. Neurosurgery. 2006;58(3):534–41. discussion −41

    Article  PubMed  Google Scholar 

  9. Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke. 2004;35(10):2287–93.

    Article  PubMed  Google Scholar 

  10. Nakaoka H, Tajima A, Yoneyama T, Hosomichi K, Kasuya H, Mizutani T, et al. Gene expression profiling reveals distinct molecular signatures associated with the rupture of intracranial aneurysm. Stroke. 2014;45(8):2239–45.

    Article  CAS  PubMed  Google Scholar 

  11. Marchese E, Vignati A, Albanese A, Nucci CG, Sabatino G, Tirpakova B, et al. Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms. J Biol Regul Homeost Agents. 2010;24(2):185–95.

    CAS  PubMed  Google Scholar 

  12. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N. Gene expression profile of the intima and media of experimentally induced cerebral aneurysms in rats by laser-microdissection and microarray techniques. Int J Mol Med. 2008;22(5):595–603.

    CAS  PubMed  Google Scholar 

  13. Yong-Zhong G, van Alphen HA. Pathogenesis and histopathology of saccular aneurysms: review of the literature. Neurol Res. 1990;12(4):249–55.

    Article  CAS  PubMed  Google Scholar 

  14. Hasan D, Hashimoto T, Kung D, Macdonald RL, Winn HR, Heistad D. Upregulation of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) in wall of ruptured human cerebral aneurysms: preliminary results. Stroke. 2012.

  15. Bygglin H, Laaksamo E, Myllärniemi M, Tulamo R, Hernesniemi J, Niemelä M, et al. Isolation, culture, and characterization of smooth muscle cells from human intracranial aneurysms. Acta Neurochir (Wien). 2011;153(2):311–8.

    Article  Google Scholar 

  16. Jia W, Wang R, Zhao J, Liu IY, Zhang D, Wang X, et al. E-selectin expression increased in human ruptured cerebral aneurysm tissues. Can J Neurol Sci. 2011;38(6):858–62.

    Article  PubMed  Google Scholar 

  17. Pera J, Korostynski M, Krzyszkowski T, Czopek J, Slowik A, Dziedzic T, et al. Gene expression profiles in human ruptured and unruptured intracranial aneurysms: what is the role of inflammation. Stroke. 2010;41(2):224–31.

    Article  CAS  PubMed  Google Scholar 

  18. Jin D, Sheng J, Yang X, Gao B. Matrix metalloproteinases and tissue inhibitors of metalloproteinases expression in human cerebral ruptured and unruptured aneurysm. Surg Neurol. 2007;68(Suppl 2):S11–6. discussion S6

    Article  PubMed  Google Scholar 

  19. Peters D, Kassam A, Feingold E, Heidrich-O'Hare E, Yonas H, Ferrell R, et al. Molecular anatomy of an intracranial aneurysm: coordinated expression of genes involved in wound healing and tissue remodeling. Stroke. 2001;32(4):1036–42.

    Article  CAS  PubMed  Google Scholar 

  20. Feng L, Stern D, Pile-Spellman J. Human endothelium: endovascular biopsy and molecular analysis. Radiology. 1999;212(3):655–64.

    Article  CAS  PubMed  Google Scholar 

  21. Yu S, Huang L, Song Y, Li A, Qin J, Yu X, et al. Identification of human coronary artery endothelial cells obtained by coronary endovascular biopsy. Zhonghua Xin Xue Guan Bing Za Zhi. 2008;36(3):240–2.

    PubMed  Google Scholar 

  22. Cooke DL, Bauer D, Sun Z, Stillson C, Nelson J, Barry D, et al. Endovascular biopsy: technical feasibility of novel endothelial cell harvesting devices assessed in a rabbit aneurysm model. Interv Neuroradiol. 2015;21(1):120–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cooke DL SH, Sun Z, Guo Y, Guo D, Saeed MM, Hetts SW, Higashida RT, Dowd CF, Young WL, Halbach VV. Evaluating the feasibility of harvesting endothelial cells using detachable coils. Interv Neuroradiol. 2013.

  24. Sun Z, Lawson DA, Sinclair E, Wang CY, Lai MD, Hetts SW, et al. Endovascular biopsy: strategy for analyzing gene expression profiles of individual endothelial cells obtained from human vessels(✩). Biotechnol Rep (Amst). 2015;7:157–65.

    Article  Google Scholar 

  25. Sun Z, Su H, Long B, Sinclair E, Hetts SW, Higashida RT, et al. Endothelial cell high-enrichment from endovascular biopsy sample by laser capture microdissection and fluorescence activated cell sorting. J Biotechnol. 2014;192(Pt A):34–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lehoux S, Tedgui A. Cellular mechanics and gene expression in blood vessels. J Biomech. 2003;36(5):631–43.

    Article  PubMed  Google Scholar 

  27. Anwar MA, Shalhoub J, Lim CS, Gohel MS, Davies AH. The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J Vasc Res. 2012;49(6):463–78.

    Article  CAS  PubMed  Google Scholar 

  28. Navone SE, Marfia G, Invernici G, Cristini S, Nava S, Balbi S, et al. Isolation and expansion of human and mouse brain microvascular endothelial cells. Nat Protoc. 2013;8(9):1680–93.

    Article  CAS  PubMed  Google Scholar 

  29. van Beijnum JR, Rousch M, Castermans K, van der Linden E, Griffioen AW. Isolation of endothelial cells from fresh tissues. Nat Protoc. 2008;3(6):1085–91.

    Article  PubMed  Google Scholar 

  30. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352(6282):189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015;33(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  32. Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV, Wu C, et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell. 2015;163(6):1400–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scialdone A, Natarajan KN, Saraiva LR, Proserpio V, Teichmann SA, Stegle O, et al. Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods. 2015;85:54–61.

    Article  CAS  PubMed  Google Scholar 

  34. Szulwach KE, Chen P, Wang X, Wang J, Weaver LS, Gonzales ML, et al. Single-cell genetic analysis using automated microfluidics to resolve somatic mosaicism. PLoS One. 2015;10(8):e0135007.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kumar RM, Cahan P, Shalek AK, Satija R, DaleyKeyser AJ, Li H, et al. Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature. 2014;516(7529):56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013;498(7453):236–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liquet B, Lê Cao KA, Hocini H, Thiébaut R. A novel approach for biomarker selection and the integration of repeated measures experiments from two assays. BMC Bioinf. 2012;13:325.

    Article  Google Scholar 

  39. Westerhuis JA, van Velzen EJ, Hoefsloot HC, Smilde AK. Multivariate paired data analysis: multilevel PLSDA versus OPLSDA. Metabolomics. 2010;6(1):119–28.

    Article  CAS  PubMed  Google Scholar 

  40. Team RC. R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2016.

  41. Liquet K-ALCFRGDBGBPMCZY. mixOmics: omics. Data integration project. R package version 6.1.2. ed: https://CRAN.R-project.org/package=mixOmics (2017).

  42. Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell. 2016;166(5):1308–23.e30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Adiconis X, Borges-Rivera D, Satija R, DeLuca DS, Busby MA, Berlin AM, et al. Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat Methods. 2013;10(7):623–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saarinen J, Kohonen T. Self-organized formation of colour maps in a model cortex. Perception. 1985;14(6):711–9.

    Article  CAS  PubMed  Google Scholar 

  47. Kohonen T. Adaptive, associative, and self-organizing functions in neural computing. Appl Opt. 1987;26(23):4910–8.

    Article  CAS  PubMed  Google Scholar 

  48. Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 1982;43:59–69.

    Article  Google Scholar 

  49. Datta S. Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics. 2003;19(4):459–66.

    Article  CAS  PubMed  Google Scholar 

  50. Datta S. Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC Bioinf. 2006;7:397.

    Article  Google Scholar 

  51. Brock G, Pihur V, Datta S, Datta S. clValid: an R package for cluster validation. J Stat Softw. 25(4) http://www.jstatsoft.org/v25/i04 ed2008.

  52. Handl J, Knowles J, Kell DB. Computational cluster validation in post-genomic data analysis. Bioinformatics. 2005;21(15):3201–12.

    Article  CAS  PubMed  Google Scholar 

  53. Kim TG, Kim NK, Baek MJ, Huh R, Chung SS, Choi JU, et al. The relationships between endothelial nitric oxide synthase polymorphisms and the formation of intracranial aneurysms in the Korean population. Neurosurg Focus. 2011;30(6):E23.

    Article  PubMed  Google Scholar 

  54. Foroud T, Sauerbeck L, Brown R, Anderson C, Woo D, Kleindorfer D, et al. Genome screen in familial intracranial aneurysm. BMC Med Genet. 2009;10:3.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Foroud T, Sauerbeck L, Brown R, Anderson C, Woo D, Kleindorfer D, et al. Genome screen to detect linkage to intracranial aneurysm susceptibility genes: the Familial Intracranial Aneurysm (FIA) study. Stroke. 2008;39(5):1434–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Krischek B, Inoue I. The genetics of intracranial aneurysms. J Hum Genet. 2006;51(7):587–94.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the UCSF Neurointerventional Radiology service, particularly its fellows, for their help in the sample collection.

Sources of Funding

The project was funded in part by the Society for Neurointerventional Surgery, the UCSF Department of Radiology, and by a grant from the National Cancer Institute R01 CA056721 to Z.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Cooke.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Electronic Supplementary Material

ESM 1

(DOCX 15 kb).

Table S1

(DOCX 148 kb).

Table S2

(DOCX 149 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooke, D.L., McCoy, D.B., Halbach, V.V. et al. Endovascular Biopsy: In Vivo Cerebral Aneurysm Endothelial Cell Sampling and Gene Expression Analysis. Transl. Stroke Res. 9, 20–33 (2018). https://doi.org/10.1007/s12975-017-0560-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0560-4

Keywords

Navigation