Skip to main content

Advertisement

Log in

Vascular Endothelial Growth Factors A and C are Induced in the SVZ Following Neonatal Hypoxia–Ischemia and Exert Different Effects on Neonatal Glial Progenitors

  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Episodes of neonatal hypoxia–ischemia (H-I) are strongly associated with cerebral palsy and a wide spectrum of other neurological deficits in children. Two key processes required to repair damaged organs are to amplify the number of precursors capable of regenerating damaged cells and to direct their differentiation towards the cell types that need to be replaced. Since hypoxia induces vascular endothelial growth factor (VEGF) production, it is logical to predict that VEGFs are key mediators of tissue repair after H-I injury. The goal of this study was to test the hypothesis that certain VEGF isoforms increase during recovery from neonatal H-I and that they would differentially affect the proliferation and differentiation of subventricular zone (SVZ) progenitors. During the acute recovery period from H-I, both VEGF-A and VEGF-C were transiently induced in the SVZ, which correlated with an increase in SVZ blood vessel diameter. These growth factors were produced by glial progenitors, astrocytes, and to a lesser extent, microglia. VEGF-A promoted the production of astrocytes from SVZ glial progenitors, while VEGF-C stimulated the proliferation of both early and late oligodendrocyte progenitor cells (OPCs), which was abolished by blocking VEGFR-3. Altogether, these results provide new insights into the signals that coordinate the reactive responses of the progenitors in the SVZ to neonatal H-I. Our studies further suggest that therapeutics that can extend VEGF-C production and/or agonists that stimulate VEGFR-3 will promote OPC development to enhance myelination after perinatal brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Levison SW, DeVellis J, Goldman JE. Astrocyte development. In: Jacobsen M, Rao MS, editors. Developmental neurobiology. 4th ed. New York: Plenum; 2005. p. 197–222.

    Chapter  Google Scholar 

  2. Back SA. Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Ment Retard Dev Disabil Res Rev. 2006;12(2):129–40.

    Article  PubMed  Google Scholar 

  3. Stevenson DK, Benitz WE, Sunshine P. Fetal and neonatal brain injury: mechanisms, management and the risks of practice. 3rd ed. New York: Cambridge University Press; 2003.

    Book  Google Scholar 

  4. Hagberg B, Sanner G, Steen M. The disequilibrium syndrome in cerebral palsy. Acta Paediatr Scand (suppl). 1972;226:1–63.

    CAS  Google Scholar 

  5. Towfighi J, Mauger D, Vannucci RC, Vannucci SJ. Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia–ischemia: a light microscopic study. Dev Brain Res. 1997;100:149–60.

    Article  CAS  Google Scholar 

  6. Vannucci R, Vannucci SJ. Glucose, acidosis, and perinatal hypoxic–ischemic brain damage. Ment Retard Dev Disabil Res Rev. 1997;3(1):69–75.

    Article  Google Scholar 

  7. Vannucci RC. Hypoxic–ischemic encephalopathy: clinical aspects. In: Fanaroff AA, Martin RJ, editors. Neonatal perinatal medicine IV. Philadelphia: Mosby-Yearbook, Inc.; 1997. p. 877–91.

    Google Scholar 

  8. Vannucci RC, Vannucci SJ. A model of perinatal hypoxic–ischemic brain damage. Ann N Y Acad Sci. 1997;835:234–49.

    Article  PubMed  CAS  Google Scholar 

  9. Saliba E, Henrot A. Inflammatory mediators and neonatal brain damage. Biol Neonate. 2001;79(3–4):224–7.

    PubMed  CAS  Google Scholar 

  10. Stoll G, Jander S, Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol. 1998;56(2):149–71.

    Article  PubMed  CAS  Google Scholar 

  11. Tan DX, Manchester LC, Sainz R, Mayo JC, Reiter RJ. Antioxidant strategies in protection against neurodegenerative disorders. Expert Opin Ther Patents. 2003;13:1513–43.

    Article  CAS  Google Scholar 

  12. Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia–ischemia. J Neurosci. 2002;22(2):455–63.

    PubMed  CAS  Google Scholar 

  13. Back SA, Luo NL, Borenstein NS, Volpe JJ, Kinney HC. Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neurol. 2002;61(2):197–211.

    PubMed  Google Scholar 

  14. Ness JK, Romanko MJ, Rothstein RP, Wood TL, Levison SW. Perinatal hypoxia–ischemia induces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors. Dev Neurosci. 2001;23(3):203–8.

    Article  PubMed  CAS  Google Scholar 

  15. Maurer MH, Tripps WK, Feldmann Jr RE, Kuschinsky W. Expression of vascular endothelial growth factor and its receptors in rat neural stem cells. Neurosci Lett. 2003;344(3):165–8.

    Article  PubMed  CAS  Google Scholar 

  16. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A. 2002;99(18):11946–50.

    Article  PubMed  CAS  Google Scholar 

  17. Greenberg DA, Jin K. From angiogenesis to neuropathology. Nature. 2005;438(7070):954–9.

    Article  PubMed  CAS  Google Scholar 

  18. Zachary I. Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals. 2005;14(5):207–21.

    Article  PubMed  CAS  Google Scholar 

  19. Galvan V, Greenberg DA, Jin K. The role of vascular endothelial growth factor in neurogenesis in adult brain. Mini Rev Med Chem. 2006;6(6):667–9.

    Article  PubMed  CAS  Google Scholar 

  20. Hashimoto T, Zhang XM, Chen BY, Yang XJ. VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development. 2006;133(11):2201–10.

    Article  PubMed  CAS  Google Scholar 

  21. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111(12):1843–51.

    PubMed  CAS  Google Scholar 

  22. Sun Y, Jin K, Childs JT, Xie L, Mao XO, Greenberg DA. Vascular endothelial growth factor-B (VEGFB) stimulates neurogenesis: evidence from knockout mice and growth factor administration. Dev Biol. 2006;289(2):329–35.

    Article  PubMed  CAS  Google Scholar 

  23. Zhu Y, Jin K, Mao XO, Greenberg DA. Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression. FASEB J. 2003;17(2):186–93.

    Article  PubMed  CAS  Google Scholar 

  24. Mani N, Khaibullina A, Krum JM, Rosenstein JM. Astrocyte growth effects of vascular endothelial growth factor (VEGF) application to perinatal neocortical explants: receptor mediation and signal transduction pathways. Exp Neurol. 2005;192(2):394–406.

    Article  PubMed  CAS  Google Scholar 

  25. Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci. 2006;9(3):340–8.

    Article  PubMed  Google Scholar 

  26. Rice JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic–ischemic brain damage in the rat. Ann Neurol. 1981;9:131–41.

    Article  PubMed  Google Scholar 

  27. Vannucci RC, Lyons DT, Vasta F. Regional cerebral blood flow during hypoxia–ischemia in immature rats. Stroke. 1988;19:245–50.

    Article  PubMed  CAS  Google Scholar 

  28. Vannucci RC, Connor JR, Mauger DT, Palmer C, Smith MB, Towfighi J, et al. Rat model of perinatal hypoxic–ischemic brain damage. J Neurosci Res. 1999;55(2):158–63.

    Article  PubMed  CAS  Google Scholar 

  29. Young G, Levison S. An improved method for propagating oligodendrocyte progenitors in vitro. J Neurosci Methods. 1997;77:163–8.

    Article  PubMed  CAS  Google Scholar 

  30. Levison S, McCarthy K. Astroglia in culture. In: Banker G, Goslin K, editors. Culturing nerve cells. Cambridge: MIT; 1991. p. 309–36.

    Google Scholar 

  31. Ness JK, Mitchell NE, Wood TL. IGF-I and NT-3 signaling pathways in developing oligodendrocytes: differential regulation and activation of receptors and the downstream effector Akt. Dev Neurosci. 2002;24(5):437–45.

    Article  PubMed  CAS  Google Scholar 

  32. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008;3(3):279–88.

    Article  PubMed  CAS  Google Scholar 

  33. Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell–cell interactions. Cell Stem Cell. 2008;3(3):289–300.

    Article  PubMed  CAS  Google Scholar 

  34. Currle DS, Gilbertson RJ. The niche revealed. Cell Stem Cell. 2008;3(3):234–6.

    Article  PubMed  CAS  Google Scholar 

  35. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. 2008;3(3):265–78.

    Article  PubMed  CAS  Google Scholar 

  36. Wada T, Haigh JJ, Ema M, Hitoshi S, Chaddah R, Rossant J, et al. Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes definitive neural stem cell survival. J Neurosci. 2006;26(25):6803–12.

    Article  PubMed  CAS  Google Scholar 

  37. Schanzer A, Wachs FP, Wilhelm D, Acker T, Cooper-Kuhn C, Beck H, et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 2004;14(3):237–48.

    Article  PubMed  Google Scholar 

  38. Krum JM, Rosenstein JM. VEGF mRNA and its receptor flt-1 are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS. Exp Neurol. 1998;154(1):57–65.

    Article  PubMed  CAS  Google Scholar 

  39. Krum JM, Mani N, Rosenstein JM. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience. 2002;110(4):589–604.

    Article  PubMed  CAS  Google Scholar 

  40. Krum JM, Mani N, Rosenstein JM. Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury. Exp Neurol. 2008;212(1):108–17.

    Article  PubMed  CAS  Google Scholar 

  41. Arai Y, Deguchi K, Takashima S. Vascular endothelial growth factor in brains with periventricular leukomalacia. Pediatr Neurol. 1998;19(1):45–9.

    Article  PubMed  CAS  Google Scholar 

  42. Moreno-Lopez B, Romero-Grimaldi C, Noval JA, Murillo-Carretero M, Matarredona ER, Estrada C. Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and olfactory bulb. J Neurosci. 2004;24(1):85–95.

    Article  PubMed  CAS  Google Scholar 

  43. Matarredona ER, Murillo-Carretero M, Moreno-Lopez B, Estrada C. Nitric oxide synthesis inhibition increases proliferation of neural precursors isolated from the postnatal mouse subventricular zone. Brain Res. 2004;995(2):274–84.

    Article  PubMed  CAS  Google Scholar 

  44. Massaro AR, Sbriccoli A, Tonali P. Reactive astrocytes within the acute plaques of multiple sclerosis are PSA-NCAM positive. Neurol Sci. 2002;23(5):255–6.

    Article  PubMed  CAS  Google Scholar 

  45. Hirayama A, Okoshi Y, Hachiya Y, Ozawa Y, Ito M, Kida Y, et al. Early immunohistochemical detection of axonal damage and glial activation in extremely immature brains with periventricular leukomalacia. Clin Neuropathol. 2001;20(2):87–91.

    PubMed  CAS  Google Scholar 

  46. Sizonenko SV, Camm EJ, Dayer A, Kiss JZ. Glial responses to neonatal hypoxic–ischemic injury in the rat cerebral cortex. Int J Dev Neurosci. 2008;26(1):37–45.

    Article  PubMed  CAS  Google Scholar 

  47. Kinney HC, Armstrong DD. Perinatal neuropathology. In: Graham DI, Lantos PL, editors. Greenfield’s neuropathology. New York: Oxford; 2002. p. 519–606.

    Google Scholar 

  48. Shin YJ, Choi JS, Choi JY, Cha JH, Chun MH, Lee MY. Enhanced expression of vascular endothelial growth factor receptor-3 in the subventricular zone of stroke-lesioned rats. Neurosci Lett. 2010;469(2):194–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank ImClone Systems/Eli Lilly for providing the neutralizing antibody to VEGFR-3 (IMC-3C5) and for advice on our studies. We are also grateful to Qasim Husain for the assistance with the initial sphere studies and to Kedar Mahajan and Jungsoo Min in Dr. Terri Wood’s laboratory for occasionally providing OPCs from mixed glial cell cultures.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven W. Levison.

Additional information

This study was supported by grants from the National Institute of Neurological Disorders and Stroke and National Institute of Child Health and Development (grant numbers F31NS062629 awarded to JMB and F31NS076269 awarded to LM) and from the Leducq Foundation (grant number R01HD052064 awarded to SWL).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bain, J.M., Moore, L., Ren, Z. et al. Vascular Endothelial Growth Factors A and C are Induced in the SVZ Following Neonatal Hypoxia–Ischemia and Exert Different Effects on Neonatal Glial Progenitors. Transl. Stroke Res. 4, 158–170 (2013). https://doi.org/10.1007/s12975-012-0213-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0213-6

Keywords

Navigation