Skip to main content
Log in

Human Umbilical Cord Blood Cells Alter Blood and Spleen Cell Populations After Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The human umbilical cord blood (HUCB) mononuclear cell (MNC) fraction is a mixed population of cells that induces functional repair in rodent models of stroke when injected intravenously (i.v.). The transplanted cells are found in the infarcted hemisphere and the spleen. The goal of this project was to determine the nature of the interaction between the HUCB MNCs and splenic immune cells. Male Sprague Dawley rats underwent permanent middle cerebral artery occlusion (MCAO) and received i.v. injection of either vehicle (MCAO only), HUCB MNCs, or MNCs depleted of CD14+ monocytes, CD133+ stem cells, or CD19+ B cells 48 h poststroke. At 72 h post-MCAO, the animals were euthanized, and the spleens and blood MNCs were harvested for flow cytometry and mitogen proliferation assays. All HUCB cell preparations decreased the percentage of T cells in the spleen and monocytes in the blood (p < 0.05). MNCs depleted of CD14+ and CD19+ decreased the percentage of macrophage (p < 0.001), while CD133-depleted MNCs increased the percentage of macrophage in the spleen (p < 0.001); MNC did not alter the macrophage population from the level observed after MCAO. Only HUCB MNC significantly decreased concanavalin A-induced T cell stimulation (p < 0.05). These results suggest that the effects of HUCB MNC in the spleen are not due to a single HUCB population, but the interaction of all the subpopulations together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vendrame M, Cassady CJ, Newcomb J, Butler T, Pennypacker KR, Zigova T, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke. 2004;35:2390–5.

    Article  PubMed  Google Scholar 

  2. Boltze J, Schmidt UR, Reich DM, Kranz A, Reymann KG, Strassburger M, et al. Determination of the therapeutic time window for human umbilical cord blood mononuclear cell transplantation following experimental stroke in rats. Cell Transplant. 2012;21(6):1199–1211.

    Google Scholar 

  3. Newcomb JD, Ajmo CT, Davis Sanberg C, Sanberg PR, Pennypacker KR, Willing AE. Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant. 2006;15(3):213–23.

    Article  PubMed  Google Scholar 

  4. Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, Song S, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res. 2003;73(3):296–307.

    Article  PubMed  CAS  Google Scholar 

  5. Borlongan CV, Hadman M, Davis Sanberg C, Sanberg PR. CNS entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke. 2004;35(10):2385–9.

    Article  PubMed  Google Scholar 

  6. Keimpema E, Fokkens MR, Nagy Z, Agoston V, Luiten PG, Nyakas C, et al. Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathol Appl Neurobiol. 2009;35(1):89–102.

    Article  PubMed  CAS  Google Scholar 

  7. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009;18(5):683–92.

    Article  PubMed  CAS  Google Scholar 

  8. Lappalainen RS, Narkilahti S, Huhtala T, Liimatainen T, Suuronen T, Narvanen A, et al. The SPECT imaging shows the accumulation of neural progenitor cells into internal organs after systemic administration in middle cerebral artery occlusion rats. Neurosci Lett. 2008;440(3):246–50.

    Article  PubMed  CAS  Google Scholar 

  9. Battistella V, de Freitas GR, da Fonseca LM, Mercante D, Gutfilen B, Goldenberg RC, et al. Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen Med. 2011;6(1):45–52.

    Article  PubMed  CAS  Google Scholar 

  10. Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, et al. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol. 2006;199:191–200.

    Article  PubMed  CAS  Google Scholar 

  11. Leonardo C, Hall AA, Collier LA, Ajmo Jr CT, Willing AE, Pennypacker KR. HUCB cell therapy blocks the morphological change and recruitment of CD11b-expressing, isolectin-binding proinflammatory cells after MCAO. J Neurosci Res. 2010;88:1213–22.

    PubMed  CAS  Google Scholar 

  12. Vendrame M, Gemma C, de Mesquita D, Collier L, Bickford PC, Davis Sanberg C, et al. Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev. 2005;14:595–604.

    Article  PubMed  CAS  Google Scholar 

  13. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, et al. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain. 2008;131(Pt 3):616–29.

    Article  PubMed  Google Scholar 

  14. Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest. 2004;114(3):330–8.

    PubMed  CAS  Google Scholar 

  15. Boltze J, Kowalski I, Geiger K, Reich D, Gunther A, Buhrle C, et al. Experimental treatment of stroke in spontaneously hypertensive rats by CD34+ and CD34− cord blood cells. Ger Med Sci. 2005;3:Doc09.

    PubMed  Google Scholar 

  16. Boltze J, Reich DM, Hau S, Reymann KG, Strassburger M, Lobsein D, et al. Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant. 2012;21:723–37.

    Article  Google Scholar 

  17. Nystedt J, Makinen S, Laine J, Jolkkonen J. Human cord blood CD34+ cells and behavioral recovery following focal cerebral ischemia in rats. Acta Neurobiologie Experimentalis. 2006;66:293–300.

    Google Scholar 

  18. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006;26(5):654–65.

    Article  CAS  Google Scholar 

  19. Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, et al. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol. 2006;176:6523–31.

    PubMed  CAS  Google Scholar 

  20. Ajmo JCT, Collier LA, Leonardo CC, Hall AA, Cuevas J, Green SM, et al. Blockade of adrenoreceptors inhibits the splenic response to stroke. Exp Neurol. 2009;218:47–55.

    Article  PubMed  CAS  Google Scholar 

  21. Rainsford E, Reen DJ. Interleukin 10, produced in abundance by human newborn T cells, may be the regulator of increased tolerance associated with cord blood stem cell transplantation. Br J Haematol. 2002;116(3):702–9.

    Article  PubMed  CAS  Google Scholar 

  22. Mueller CG, Boix C, Kwan W-H, Daussy C, Fournier E, Fridman WH, et al. Critical role of monocytes to support normal B cell and diffuse large B cell lymphoma survival and proliferation. J Leukoc Biol. 2007;82(3):567–75.

    Article  PubMed  CAS  Google Scholar 

  23. Jagannathan M, McDonnell M, Liang Y, Hasturk H, Hetzel J, Rubin D, et al. Toll-like receptors regulate B cell cytokine production in patients with diabetes. Diabetol. 2010;53(7):1461–71.

    Article  CAS  Google Scholar 

  24. Vanneaux V, El-Ayoubi F, Delmau C, Driancourt C, Lecourt S, Grelier A, et al. In vitro and in vivo analysis of endothelial progenitor cells from cryopreserved umbilical cord blood: are we ready for clinical application? Cell Transplant. 2010;19(9):1143–55.

    Article  PubMed  Google Scholar 

  25. Chang JW, Hung SP, Wu HH, Wu WM, Yang AH, Tsai HL, et al. Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell Transplant. 2011;20(2):245–57.

    Article  PubMed  Google Scholar 

  26. Ivanovic Z, Duchez P, Chevaleyre J, Vlaski M, Lafarge X, Dazey B, et al. Clinical-scale cultures of cord blood CD34(+) cells to amplify committed progenitors and maintain stem cell activity. Cell Transplant. 2011;20(9):1453–63.

    Article  PubMed  Google Scholar 

  27. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.

    Article  PubMed  CAS  Google Scholar 

  28. Geissmann F, Auffray C, Palframan R, Wirrig C, Ciocca A, Campisi L, et al. Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol. 2008;86:398–408.

    Article  PubMed  CAS  Google Scholar 

  29. McGuckin CP, Pearce D, Forraz N, Tooze JA, Watt SM, Pettengell R. Multiparametric analysis of immature cell populations in umbilical cord blood and bone marrow. Eur J Haematol. 2003;71(5):341–50.

    Article  PubMed  Google Scholar 

  30. Saadi S, Platt JL. Immunology of xenotransplantation. Life Sci. 1998;62(5):365–87.

    Article  PubMed  CAS  Google Scholar 

  31. Saadi S, Holzknecht RA, Patte CP, Stern DM, Platt JL. Complement-mediated regulation of tissue factor activity in endothelium. J Exp Med. 1995;182(6):1807–14.

    Article  PubMed  CAS  Google Scholar 

  32. Mezey E, Mayer B, Nemeth K. Unexpected roles for bone marrow stromal cells (or MSCs): a real promise for cellular, but not replacement, therapy. Oral Dis. 2010;16(2):129–35.

    Article  PubMed  CAS  Google Scholar 

  33. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Florida Department of Health, James and Esther King Biomedical Research Program (07 KB-07), and the National Institute of Neurological Diseases and Stroke (RO1NS52839 to AEW). AEW and PRS are inventors on cord blood related patents. AEW is a consultant to Saneron CCEL Therapeutics, Inc. and PRS is co-founder of Saneron CCEL Therapeutics, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Willing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golden, J.E., Shahaduzzaman, M., Wabnitz, A. et al. Human Umbilical Cord Blood Cells Alter Blood and Spleen Cell Populations After Stroke. Transl. Stroke Res. 3, 491–499 (2012). https://doi.org/10.1007/s12975-012-0208-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0208-3

Keywords

Navigation