Skip to main content
Log in

Molecular tools reveal diets of insectivorous birds from predator fecal matter

  • Technical Review
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

The emerging field of molecular scatology enables critical testing of food web theory. The non-invasive application of molecular tools allows for sequencing of prey DNA from predator fecal matter, evaluating diet breadth and foraging guild. While insectivorous bats are obscure foragers compared to most insectivorous birds, more is known about which arthropod species bats consume because molecular techniques have been optimized for mammalian systems, not avian physiology. Our research objective was to use molecular tools to detect arthropod prey in the fecal matter of an insectivorous avian predator. We used Western Bluebird (Sialia mexicana) as a model predator due to its generalist foraging strategy. We compared two fecal DNA extraction kits: (1) Qiagen’s DNA stool mini kits, used widely in dietary studies on bats and (2) Zymo’s Soil/Fecal DNA MiniPrep kits, not currently cited in the molecular scatology literature. We successfully extracted DNA only with the Zymo kit, amplified mitochondrial cytochrome oxidase c subunit I genes, sequenced, and identified the arthropod prey. A spiked PCR experiment showed evidence of possible inhibitors remaining in the Qiagen kit extractions. Overall, arthropod prey from seven different orders and five different classes were identified. We discuss the ecological implications of these data and suggest areas of future research applying molecular techniques to avian fecal matter. Consistent methodological advancement will enable molecular scatology to identify ecosystem services provided by insectivorous birds, develop ecological theory, and inform predator conservation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Beal F (1915) Food of the robins and bluebirds of the United States. U.S. Department of Agriculture Biological Survey Bulletin, vol 171, pp 151–175

  • Bohmann K, Monadjem A, Noer CL et al (2011) Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing. PLoS ONE 6:e21441. doi:10.1371/journal.pone.0021441

    Article  PubMed  CAS  Google Scholar 

  • Bowles E, Schulte PM, Tollit DJ et al (2011) Proportion of prey consumed can be determined from faecal DNA using real-time PCR. Mol Ecol Resour 11:530–540

    Article  PubMed  Google Scholar 

  • Carlisle JD, Holberton RL (2006) Relative efficiency of fecal versus regurgitated samples for assessing diet and the deleterious effects of a tartar emetic on migratory birds. J Field Ornithol 77:126–135. doi:10.1111/j.1557-9263.2006.00032.x

    Article  Google Scholar 

  • Clare EL, Fraser EE, Braid HE et al (2009) Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach to detect arthropod prey. Mol Ecol 18:2532–2542. doi:10.1111/j.1365-294X.2009.04184.x

    Article  PubMed  Google Scholar 

  • Clare EL, Barber BR, Sweeney BW et al (2011) Eating local: influences of habitat on the diet of little brown bats (Myotis lucifugus). Mol Ecol 20:1772–1780. doi:10.1111/j.1365-294X.2011.05040.x

    Article  PubMed  CAS  Google Scholar 

  • Corse E, Costedoat C, Chappaz R et al (2010) A PCR-based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces. Mol Ecol Resour 10:96–108. doi:10.1111/j.1755-0998.2009.02795.x

    Article  PubMed  CAS  Google Scholar 

  • Deagle BE, Eveson JP, Jarman SN (2006) Quantification of damage in DNA recovered from highly degraded samples—a case study on DNA in faeces. Front Zool 3:11

    Article  PubMed  Google Scholar 

  • Deagle BE, Gales NJ, Evans K et al (2007) Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus). PLoS ONE 2:e831. doi:10.1371/journal.pone.0000831

    Article  PubMed  Google Scholar 

  • Deagle BE, Kirkwood R, Jarman SN (2009) Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol Ecol 18:2022–2038. doi:10.1111/j.1365-294X.2009.04158.x

    Article  PubMed  CAS  Google Scholar 

  • Deagle BE, Chiaradia A, McInnes J, Jarman SN (2010) Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? Conserv Genet 11:2039–2048. doi:10.1007/s10592-010-0096-6

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Guinan JA, Gowaty PA, Eltzroth EK (2008) Western Bluebird (Sialia mexicana). The birds of North America online. In: Poole A (ed) Ithaca: cornell lab of ornithology; retrieved from the birds of North America online: http://bna.birds.cornell.edu/bna/species/510. doi:10.2173/bna.510

  • Howard E, Heiser J (2004) What’s inside: anatomy and physiology. In: Podulka S, Rohrbaugh R, Bonney R (eds) Cornell lab of ornithology’s handbook of bird biology, chap 4, 2nd edn. Princeton University Press, Ithaca

  • Jarman SN, Gales NJ, Tierney M et al (2002) A DNA-based method for identification of krill species and its application to analysing the diet of marine vertebrate predators. Mol Ecol 11:2679–2690

    Article  PubMed  CAS  Google Scholar 

  • King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963. doi:10.1111/j.1365-294X.2007.03613.x

    Article  PubMed  CAS  Google Scholar 

  • Leonard ML, Teather KL, Horn AG et al (1994) Provisioning in Western Bluebirds is not related to offspring sex. Behav Ecol 5:455–459. doi:10.1093/beheco/5.4.455

    Article  Google Scholar 

  • Levey DJ, Karasov WH (1992) Digestive modulation in a seasonal frugivore, the American Robin (Turdus migratorius). Am J Physiol 262:G711–G718

    PubMed  CAS  Google Scholar 

  • Levey DJ, Tewksbury JJ, Bolker BM (2008) Modelling long-distance seed dispersal in heterogeneous landscapes. J Ecol 96:599–608. doi:10.1111/j.1365-2745.2008.01401.x

    Article  Google Scholar 

  • Mellott RS, Woods PE (1993) An improved ligature technique for dietary sampling in nestling birds. J Field Ornithol 64:205–210

    Google Scholar 

  • Moody DT (1970) A method for obtaining food samples from insectivorous birds. Auk 87:579

    Article  Google Scholar 

  • Murray DC, Bunce M, Cannell BL et al (2011) DNA-based faecal dietary analysis: a comparison of qPCR and high throughput sequencing approaches. PLoS ONE 6:e25776. doi:10.1371/journal.pone.0025776

    Article  PubMed  CAS  Google Scholar 

  • Neuweiler G (2000) The biology of bats. Oxford University Press, New York

    Google Scholar 

  • Newsome SD, Del Rio CM, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436. doi:10.1890/060150.01

    Google Scholar 

  • Oehm J, Juen A, Nagiller K et al (2011) Molecular scatology: how to improve prey DNA detection success in avian faeces? Mol Ecol Resour 11:620–628

    Article  PubMed  Google Scholar 

  • Pompanon F, Deagle BE, Symondson WOC et al (2011) Who is eating what: diet assessment using next generation sequencing. Mol Ecol. doi:10.1111/j.1365-294X.2011.05403.x

    PubMed  Google Scholar 

  • Razgour O, Clare EL, Zeale MRK et al (2011) High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecol Evol 1:556–570. doi:10.1002/ece3.49

    Article  PubMed  Google Scholar 

  • Scupham A, Jones J, Wesley I (2007) Comparison of DNA extraction methods for analysis of turkey cecal microbiota. J Appl Microbiol 102:401–409

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Eveleigh ES, McCann KS et al (2011) Barcoding a quantified food web: crypsis, concepts, ecology and hypotheses. PLoS ONE 6:e14424. doi:10.1371/journal.pone.0014424

    Article  PubMed  Google Scholar 

  • Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641

    Article  PubMed  CAS  Google Scholar 

  • Valentini A, Miquel C, Nawaz MA et al (2009) New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Mol Ecol Resour 9:51–60. doi:10.1111/j.1755-0998.2008.02352.x

    Article  PubMed  CAS  Google Scholar 

  • Wilson JJ, Rougerie R, Schonfeld J et al (2011) When species matches are unavailable are DNA barcodes correctly assigned to higher taxa? an assessment using sphingid moths. BMC Ecol 11:18

    Article  PubMed  Google Scholar 

  • Zeale MRK, Butlin RK, Barker GLA et al (2011) Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol Ecol Resour 11:236–244. doi:10.1111/j.1755-0998.2010.02920.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

National Science Foundation (DBI-1103583) and the University of California Agricultural Experiment Station provided funding for this project. We thank Ron Rosenbrand, Diane Kenworthy, Robert Burney, Joel Peterson, Bedrock Vineyards, and Spring Mountain Vineyards for access to bluebird nest boxes. We thank Marie Lefebvre for customizing a Perl script to obtain BLAST identifications for sequences. Four anonymous reviewers provided helpful comments on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Jedlicka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jedlicka, J.A., Sharma, A.M. & Almeida, R.P.P. Molecular tools reveal diets of insectivorous birds from predator fecal matter. Conservation Genet Resour 5, 879–885 (2013). https://doi.org/10.1007/s12686-013-9900-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-013-9900-1

Keywords

Navigation