Skip to main content
Log in

Controlled-Atmosphere Flame Fusion Growth of Nickel Poly-oriented Spherical Single Crystals—Unraveling Decades of Impossibility

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Experimental research using monocrystalline electrodes has been a hallmark of interfacial electrochemistry and electrocatalysis since 1980. However, it has been limited to mainly noble metals because of the challenges encountered when using non-noble metals. We report on the development of controlled-atmosphere flame fusion that enables the growth of spherical single crystals of non-noble metals in controlled gaseous atmosphere and without the formation of surface or bulk oxides. The set-up is used to grow nickel single crystals the structure of which is verified using Laue X-ray back-scattering and scanning electron microscopy (SEM). The equilibrium shape of the nickel single crystals calculated using Wulff construction agrees with the actual shape determined using SEM. Electrochemical measurements in aqueous NaOH solution using the monocrystalline Ni electrodes reveal cyclic voltammetry features unique to their surface structure. The methodology, transferrable to other metals, creates enormous research opportunities in interfacial electrochemistry, electrocatalysis, surface science, gas-phase catalysis, and corrosion science.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrochemical growth of surface oxides on nickel. Part 1: formation of α-Ni(OH)2 in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 2, 317–330 (2011)

    Article  CAS  Google Scholar 

  2. J. Kleperis, G. Wójcik, A. Czerwinski, J. Skowronski, M. Kopczyk, M. Beltowska-Brzezinska, Electrochemical behavior of metal hydrides. J. Solid State Electrochem. 5, 229–249 (2001)

    Article  CAS  Google Scholar 

  3. M. Fleischmann, K. Korinek, D. Pletcher, The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes. J. Chem. Soc. Perkin Trans 2, 1396–1403 (1972)

    Article  Google Scholar 

  4. H. Wendt, G. Imarisio, Nine years of research and development on advanced water electrolysis. A review of the research programme of the Commission of the European Communities. J. Appl. Electrochem. 18, 1–14 (1988)

    Article  CAS  Google Scholar 

  5. S.P. Jiang, S.H. Chan, A review of anode materials development in solid oxide fuel cells. J. Mater. Sci. 39, 4405–4439 (2004)

    Article  CAS  Google Scholar 

  6. S.-H. Lee, C.E. Tracy, J.R. Pitts, Effect of nonstoichiometry of nickel oxides on their supercapacitor behavior. Electrochem. Solid-State Lett 7, A299–A301 (2004)

    Article  CAS  Google Scholar 

  7. K. Nakaoka, J. Ueyama, K. Ogura, Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films. J. Electroanal. Chem. 571, 93–99 (2004)

    Article  CAS  Google Scholar 

  8. M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrochemical growth of surface oxides on nickel. Part 3: formation of β-NiOOH in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 6, 60–71 (2015)

    Article  CAS  Google Scholar 

  9. A.K. Shukla, S. Venugopalan, B. Hariprakash, Nickel-based rechargeable batteries. J. Power Sources 100, 125–148 (2001)

    Article  CAS  Google Scholar 

  10. S.L. Medway, C.A. Lucas, A. Kowal, R.J. Nichols, D. Johnson, In situ studies of the oxidation of nickel electrodes in alkaline solution. J. Electroanal. Chem. 587, 172–181 (2006)

    Article  CAS  Google Scholar 

  11. M. Grdeń, K. Klimek, A. Czerwiński, A quartz crystal microbalance study on a metallic nickel electrode. J. Solid State Electrochem. 8, 390–397 (2004)

    Article  Google Scholar 

  12. K. Juodkazis, J. Juodkazyte, R. Vilkauskaite, V. Jasulaitiene, Nickel surface anodic oxidation and electrocatalysis of oxygen evolution. J. Solid State Electrochem. 12, 1469–1479 (2008)

    Article  CAS  Google Scholar 

  13. M.P. Soriaga, Ultra-high vacuum techniques in the study of single-crystal electrode surfaces. Prog. Surf. Sci 39, 325–443 (1992)

    Article  CAS  Google Scholar 

  14. E. Herrero, L.J. Buller, H.D. Abruña, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. S.-L. Yau, F.-R.F. Fan, T.P. Moffat, A.J. Bard, In situ scanning tunneling microscopy of Ni(100) in 1 M NaOH. J. Phys. Chem. 98, 5493–5499 (1994)

    Article  CAS  Google Scholar 

  16. J.L. Weininger, M.W. Breiter, Effect of crystal structure on the Anodic Oxidation of Nickel. J. Electrochem. Soc. 110, 484–490 (1963)

    Article  CAS  Google Scholar 

  17. T. Suzuki, T. Yamada, K. Itaya, In situ electrochemical scanning tunneling microscopy of Ni(111), Ni(100), and sulfur-modified Ni(100) in acidic solution. J. Phys. Chem. 100, 8954–8961 (1996)

    Article  CAS  Google Scholar 

  18. J. Clavilier, The role of anion on the electrochemical behaviour of a {111} platinum surface; an unusual splitting of the voltammogram in the hydrogen region. J. Electroanal. Chem. Interfacial Electrochem. 107, 211–216 (1980)

    Article  CAS  Google Scholar 

  19. J. Clavilier in Interfacial electrochemistry: theory: experiment, and applications, ch. 14, ed. by A. Wieckowski (Marcel Dekker Inc., New York, 1999)

  20. J. Clavilier, R. Faure, G. Guinet, R. Durand, Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J. Electroanal. Chem. 107, 205–209 (1980)

    Article  CAS  Google Scholar 

  21. L.H. Dall’Antonia, J. Perez, G. Tremiliosi-Filho, E.R. Gonzalez, Metodologia para o crescimento de esferas monocristalinas de metais nobres. Quim. Nova 22, 760–764 (1999)

    Article  Google Scholar 

  22. N. Arulmozhi, G. Jerkiewicz, Design and development of instrumentations for the preparation of platinum single crystals for electrochemistry and electrocatalysis research. Part 1: semi-automated crystal growth. Electrocatalysis 7, 507–518 (2016)

    Article  CAS  Google Scholar 

  23. N. Arulmozhi, G. Jerkiewicz, Design and development of instrumentations for the preparation of platinum single crystals for electrochemistry and electrocatalysis research. Part 2: orientation, cutting, and annealing. Electrocatalysis 8, 399–413 (2017)

    Article  CAS  Google Scholar 

  24. G. Wulff, X.X.V. Zur, Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Zeitschrift für Krist. Cryst. Mater. 34, 449–530 (1901)

    CAS  Google Scholar 

  25. A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dułak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, et al., The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29(30 pp), 273,002 (2017)

    Article  Google Scholar 

  26. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11,169–11,186 (1996)

    Article  CAS  Google Scholar 

  27. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17,953–17,979 (1994)

    Article  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  PubMed  Google Scholar 

  29. N. Arulmozhi, D. Esau, J. van Drunen, G. Jerkiewicz, Design and development of instrumentations for the preparation of platinum single crystals for electrochemistry and electrocatalysis eesearch part 3: final treatment, electrochemical measurements, and recommended laboratory practices. Electrocatalysis 9, 113–123 (2018)

    Article  CAS  Google Scholar 

  30. M. Tian, C. Cousins, D. Beauchemin, Y. Furuya, A. Ohma, G. Jerkiewicz, Influence of the working and counter electrode surface area ratios on the dissolution of platinum under electrochemical conditions. ACS Catal. 6, 5108–5116 (2016)

    Article  CAS  Google Scholar 

  31. M. Grdeń, M. Alsabet, G. Jerkiewicz, Surface science and electrochemical analysis of nickel foams. ACS Appl. Mater. Interfaces 4, 3012–3021 (2012)

    Article  PubMed  Google Scholar 

  32. J. Brillo, I. Egry, Density determination of liquid copper, nickel, and their alloys. Int. J. Thermophys. 24, 1155–1170 (2003)

    Article  CAS  Google Scholar 

  33. J. Brillo, I. Egry, Surface tension of nickel, copper, iron and their binary alloys. J. Mater. Sci. 40, 2213–2216 (2005)

    Article  CAS  Google Scholar 

  34. M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrochemical growth of surface oxides on nickel. Part 2: formation of β-Ni(OH)2 and NiO in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 5, 136–147 (2014)

    Article  CAS  Google Scholar 

  35. G. Tremiliosi-Filho, G. Jerkiewicz, B.E. Conway, Characterization and significance of the sequence of stages of oxide film formation at platinum generated by strong anodic polarization. Langmuir 8, 658–667 (1992)

    Article  CAS  Google Scholar 

  36. A. Seyeux, V. Maurice, L.H. Klein, P. Marcus, In situ scanning tunneling microscopic study of the initial stages of growth and of the structure of the passive film on Ni(111) in 1 mM NaOH(aq). J. Solid State Electrochem. 9, 337–346 (2005)

    Article  CAS  Google Scholar 

  37. N. Hirai, H. Okada, S. Hara, In-situ electrochemical atomic force microscopy with atomic resolution of Ni(110) in neutral and alkaline aqueous solution. Materials Trans. 44, 727–730 (2003)

    Article  CAS  Google Scholar 

  38. A. Seyeux, V. Maurice, L.H. Klein, P. Marcus, In situ STM study of the effect of chloride on passive film on nickel in alkaline solution. J. Electrochem. Soc. 153, B453–B463 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the technical support of Charles Hearns and Patrick Given in designing and manufacturing the stainless-steel chamber bottom. We thank Drs. Gabriele Schatte and Kevin McEleney for their assistance in acquiring scanning electron microscope images. We thank Profs. Christophe Coutanceau and Stève Baranton for their assistance in manufacturing the quartz chamber.

Funding

This research was conducted as part of the Engineered Nickel Catalysts for Electrochemical Clean Energy project administered from Queen’s University and supported by grant number RGPNM 477963-2015 under the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Frontiers Program. This work was supported by MITACS through the Globalink Research Award and the DAAD which made the collaboration between Queen’s University and Ulm University possible. This work was funded by the German Research Foundation (DFG) under project ID 390874152 (POLiS Cluster of Excellence) as well as the Sonderforschungsbereich (collaborative research centre) SFB-1316.

Author information

Authors and Affiliations

Authors

Contributions

D.E. and F.M.S. carried out all the experiments, developed the CAFF set-up and method, analyzed the data, and wrote the first version of the manuscript with equal contributions. K.L.V contributed to materials synthesis and to the electrochemical measurements. J.B. carried out the DFT calculations of the Wulff construction under the guidance of T.J. G.J. and T.J. conceived the experiments, supervised the project, analyzed the results, and contributed to the manuscript writing. All authors contributed to the discussion section and the finalization of the text and figures of the manuscript.

Corresponding authors

Correspondence to Timo Jacob or Gregory Jerkiewicz.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Other Comments

The research presented in this manuscript was initially submitted to Science on June 18, 2019 and subsequently to Nature Materials on September 12, 2019. The research was presented at the 70th Annual Meeting of the International Society of Electrochemistry in Durban, South Africa, on August 8, 2019 (the respective abstract was published on the ISE website on June 25, 2019).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2319 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esau, D., Schuett, F.M., Varvaris, K.L. et al. Controlled-Atmosphere Flame Fusion Growth of Nickel Poly-oriented Spherical Single Crystals—Unraveling Decades of Impossibility. Electrocatalysis 11, 1–13 (2020). https://doi.org/10.1007/s12678-019-00575-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00575-w

Keywords

Navigation