Skip to main content

Advertisement

Log in

Oxygen Reduction Reaction on Platinum-Terminated “Onion-structured” Alloy Catalysts

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Using periodic, self-consistent density functional theory (GGA-PW91) calculations, a series of onion-structured metal alloys have been investigated for their catalytic performance towards the oxygen reduction reaction (ORR). The onion-structures consist of a varying number of atomic layers of one or two metals each, pseudomorphically deposited on top of one another to form the overall structure. All catalysts studied feature a Pt overlayer, and often consist of at least one Pd layer below the surface. Three distinct ORR mechanisms were analyzed on the close-packed facets of all the structures considered. These mechanisms include a direct route of O2 dissociation and two hydrogen-assisted routes of O–O bond-breaking in peroxyl (OOH) and in hydrogen peroxide (HOOH) intermediates. A thermochemical analysis of the elementary steps provides information on the operating potential, and thereby energy efficiency of each electrocatalyst. A Sabatier analysis of catalytic activity based on thermochemistry of proton/electron transfer steps and activation energy barrier for O–O bond-breaking steps leads to a “volcano” relation between the surfaces’ activity and the binding energy of O. Several of the onion-structured alloys studied here show promise for achieving energy efficiency higher than that of Pt, by being active at potentials higher than the operating potential of Pt. Furthermore, some have at least as good activity as pure Pt at that operating potential. Thus, a number of the onion-structured alloys studied here are promising as cathode electrocatalysts in proton exchange membrane fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.L. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 44(14), 2132–2135 (2005)

    Article  CAS  Google Scholar 

  2. M.B. Vukmirovic, J. Zhang, K. Sasaki, A.U. Nilekar, F. Uribe, M. Mavrikakis, R.R. Adzic, Platinum monolayer electrocatalysts for oxygen reduction. Electrochim. Acta 52(6), 2257–2263 (2007)

    Article  CAS  Google Scholar 

  3. R.R. Adzic, J.X. Wang, Configuration and site of O2 adsorption on the Pt(111) electrode surface. J. Phys. Chem. B 102(45), 8988–8993 (1998)

    Article  CAS  Google Scholar 

  4. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004)

    Article  Google Scholar 

  5. J.X. Wang, N.M. Markovic, R.R. Adzic, Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: Intrinsic kinetic parameters and anion adsorption effects. J. Phys. Chem. B 108(13), 4127–4133 (2004)

    Article  CAS  Google Scholar 

  6. J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki, R.R. Adzic, Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 108(30), 10955–10964 (2004)

    Article  CAS  Google Scholar 

  7. R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells. Nature 443(7107), 63–66 (2006)

    Article  CAS  Google Scholar 

  8. V.R. Stamenkovic, B. Fowler, B.S. Mun, G.F. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811), 493–497 (2007)

    Article  CAS  Google Scholar 

  9. J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic, Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315(5809), 220–222 (2007)

    Article  CAS  Google Scholar 

  10. A.U. Nilekar, Y. Xu, J.L. Zhang, M.B. Vukmirovic, K. Sasaki, R.R. Adzic, M. Mavrikakis, Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top. Catal. 46(3–4), 276–284 (2007)

    Article  CAS  Google Scholar 

  11. M.H. Shao, K. Sasaki, P. Liu, R.R. Adzic, Pd3Fe and Pt monolayer-modified Pd3Fe electrocatalysts for oxygen reduction. Z. Phys Chem. Int. J. Res. Phys. Chem. Chem. Phys. 221(9), 1175–1190 (2007)

    CAS  Google Scholar 

  12. C.T. Campbell, Bimetallic surface-chemistry. Annu. Rev. Phys. Chem. 41, 775–837 (1990)

    Article  CAS  Google Scholar 

  13. N.M. Markovic, P.N. Ross, Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45(4–6), 121–229 (2002)

    Google Scholar 

  14. J. Greeley, M. Mavrikakis, Alloy catalysts designed from first principles. Nat. Mater. 3(11), 810–815 (2004)

    Article  CAS  Google Scholar 

  15. T. Bligaard, J.K. Nørskov, S. Dahl, J. Matthiesen, C.H. Christensen, J. Sehested, The Bronsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224(1), 206–217 (2004)

    Article  CAS  Google Scholar 

  16. A.U. Nilekar, M. Mavrikakis, Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf. Sci. 602(14), L89–L94 (2008)

    Article  CAS  Google Scholar 

  17. W.P. Zhou, X.F. Yang, M.B. Vukmirovic, B.E. Koel, J. Jiao, G.W. Peng, M. Mavrikakis, R.R. Adzic, Improving electrocatalysts for O-2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd3Fe(111) single-crystal alloy. J. Am. Chem. Soc. 131(35), 12755–12762 (2009)

    Article  CAS  Google Scholar 

  18. V.R. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128(27), 8813–8819 (2006)

    Article  CAS  Google Scholar 

  19. P. Hirunsit, P.B. Balbuena, Stability of Pt monolayers on Ir-Co Cores with and without a Pd interlayer. J. Phys. Chem. C 114(30), 13055–13060 (2010)

    Article  CAS  Google Scholar 

  20. J. Greeley, J.K. Nørskov, Electrochemical dissolution of surface alloys in acids: thermodynamic trends from first-principles calculations. Electrochim. Acta 52(19), 5829–5836 (2007)

    Article  CAS  Google Scholar 

  21. P. Mani, R. Srivastava, P. Strasser, Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J. Phys. Chem. C 112(7), 2770–2778 (2008)

    Article  CAS  Google Scholar 

  22. G.E. Ramirez-Caballero, Y.G. Ma, R. Callejas-Tovar, P.B. Balbuena, Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium. Phys. Chem. Chem. Phys. 12(9), 2209–2218 (2010)

    Article  CAS  Google Scholar 

  23. S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7(4), 333–338 (2008)

    Article  CAS  Google Scholar 

  24. L. Grabow, Y. Xu, M. Mavrikakis, Lattice strain effects on CO oxidation on Pt(111). Phys. Chem. Chem. Phys. 8(29), 3369–3374 (2006)

    Article  CAS  Google Scholar 

  25. M. Mavrikakis, B. Hammer, J.K. Nørskov, Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81(13), 2819–2822 (1998)

    Article  Google Scholar 

  26. T. Bligaard, J.K. Nørskov, Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 52(18), 5512–5516 (2007)

    Article  CAS  Google Scholar 

  27. P. Liu, J.K. Nørskov, Ligand and ensemble effects in adsorption on alloy surfaces. Phys. Chem. Chem. Phys. 3(17), 3814–3818 (2001)

    Article  CAS  Google Scholar 

  28. F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T.R. Munter, P.G. Moses, E. Skulason, T. Bligaard, J.K. Nørskov, Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99(1), 016105 (2007)

    Article  CAS  Google Scholar 

  29. J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C.M. Lok, Bronsted–Evans–Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis. J. Phys. Chem. C 112(5), 1308–1311 (2008)

    Article  CAS  Google Scholar 

  30. J.K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L.B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, C.J.H. Jacobsen, Universality in heterogeneous catalysis. J. Catal. 209(2), 275–278 (2002)

    Article  Google Scholar 

  31. M. Boudart, Kinetics of chemical processes (Prentice-Hall, Englewood, Cliffs, 1968)

    Google Scholar 

  32. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892–7895 (1990)

    Article  Google Scholar 

  33. B. Hammer, L.B. Hansen, J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59(11), 7413–7421 (1999)

    Article  Google Scholar 

  34. J. Greeley, J.K. Nørskov, M. Mavrikakis, Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 53, 319–348 (2002)

    Article  CAS  Google Scholar 

  35. D.J. Chadi, M.L. Cohen, Special points in Brillouin zone. Phys. Rev. B 8(12), 5747–5753 (1973)

    Article  Google Scholar 

  36. P. Ferrin, A.U. Nilekar, J. Greeley, M. Mavrikakis, J. Rossmeisl, Reactivity descriptors for direct methanol fuel cell anode catalysts. Surf. Sci. 602(21), 3424–3431 (2008)

    Article  CAS  Google Scholar 

  37. J. Greeley, M. Mavrikakis, A first-principles study of surface and subsurface H on and in Ni(111): diffusional properties and coverage-dependent behavior. Surf. Sci. 540(2–3), 215–229 (2003)

    Article  CAS  Google Scholar 

  38. G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)

    Article  CAS  Google Scholar 

  39. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks Cole, 1976)

  40. W.B. Pearson, Handbook of lattice spacings and structures of metals and alloys

  41. Because of well-known errors of DFT-GGA with the energetics of gas phase species, the calculated equilibrium potential at 298 K is 1.03 V

  42. M.T.M. Koper, Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J. Electroanal. Chem. 660(2), 254–260 (2011)

    Article  CAS  Google Scholar 

  43. J.L. Zhang, M.B. Vukmirovic, K. Sasaki, A.U. Nilekar, M. Mavrikakis, R.R. Adzic, Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J. Am. Chem. Soc. 127(36), 12480–12481 (2005)

    Article  CAS  Google Scholar 

  44. J. Greeley, J.K. Nørskov, Combinatorial density functional theory-based screening of surface alloys for the oxygen reduction reaction. J. Phys. Chem. C 113(12), 4932–4939 (2009)

    Article  CAS  Google Scholar 

  45. J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Nørskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1(7), 552–556 (2009)

    Article  CAS  Google Scholar 

  46. S.L. Knupp, M.B. Vukmirovic, P. Haldar, J.A. Herron, M. Mavrikakis, R.A. Adzic, Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on carbon-supported PdIr. Electrocatalysis 1(4), 213–223 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JH, JJ, KH, GP, and MM dedicate this paper to the landmark occasion of the 70th birthday of Dr. Radoslav R. Adzic. They all feel privileged to have had the opportunity to collaborate with him and be inspired by his influential ideas in the field of electrocatalysis, and wish him the very best on his birthday. Work at UW-Madison was supported by DOE-BES, Division of Chemical Sciences. JAH thanks Air Products & Chemicals, Inc. for a graduate fellowship. JJ thanks Drs. A. U. Nilekar and P. A. Ferrin for help at the initial phase of her work in this project. The computational work was performed in part using supercomputing resources from the following institutions: EMSL, a National scientific user facility at Pacific Northwest National Laboratory (PNNL); the Center for Nanoscale Materials at Argonne National Laboratory (ANL); the National Center for Computational Sciences at Oak Ridge National Laboratory (ORNL); and the National Energy Research Scientific Computing Center (NERSC). EMSL is sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL. CNM, NCCS, and ORNL are supported by the U.S. Department of Energy, Office of Science, under contracts DE-AC02-06CH11357, DEAC05-00OR22725, and DE-AC02-05CH11231, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manos Mavrikakis.

Additional information

Jeffrey A. Herron and Jiao Jiao contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herron, J.A., Jiao, J., Hahn, K. et al. Oxygen Reduction Reaction on Platinum-Terminated “Onion-structured” Alloy Catalysts. Electrocatalysis 3, 192–202 (2012). https://doi.org/10.1007/s12678-012-0087-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-012-0087-0

Keywords

Navigation